
CLIQUESENSUS: Ephemeral Overlays for
Committee-based PoS Blockchains

Alexandros Antonov
Department of Informatics

Athens University of Economics and Business
Athens, Greece

aantonov@aueb.gr

Spyros Voulgaris
Department of Informatics

Athens University of Economics and Business
Athens, Greece

voulgaris@aueb.gr

Abstract—Recent advancements in Proof-of-Stake (PoS) con-
sensus algorithms have given rise to a family of protocols that
demand strong consensus, requiring supermajority agreement
among participating nodes. Such protocols need significant net-
work resources due to the concurrent voting of a large number
of consensus nodes. As a solution, these nodes are divided
into committees, with each committee voting individually at a
dedicated time slot. We introduce CLIQUESENSUS, a protocol
that, given a distribution of consensus nodes into committees,
lets them self-organize into small, ephemeral clusters structured
in clique topologies, to accelerate the voting process, while using
only a small fraction of the network resources required by widely
deployed systems. Our evaluation demonstrates that our protocol
exhibits rapid convergence and operates with minimal network
overhead. We focus on the PoS concensus algorithm adopted by
Ethereum 2.0. In addition to our protocol, we also analyze and
simulate the clustering approach that Ethereum has adopted,
showcasing that our protocol can reduce message dissemination
time by 23% to 70%, while requiring about 190 times fewer
message forwards.

Index Terms—Peer-to-Peer, Gossiping, Proof-of-Stake Consen-
sus, Ethereum Blockchain

I. INTRODUCTION

Distributed voting has found usage in a range of decen-
tralized applications, notably in replicated log management
and database replication [1]–[3], cloud computing coordina-
tion [4], and Decentralized Autonomous Organization (DAO)
governance [5], [6]. This has been emphatically stressed in
recent years through the widespread adoption of sophisticated
consensus protocols in the domain of blockchains, particularly
those behind Proof-of-Stake (PoS) mechanisms.

Blockchains that adopt such protocols typically utilize
wealth distribution to engage a moderated number of nodes
in a consensus voting process, to establish properties such as
liveness and finality [7]–[10], These properties are crucial for
the seamless operation and usability of these blockchains.

In pure Peer-to-Peer (P2P) terms, distributed voting entails
each consensus participant disseminating a single message (its
vote) to all other participants. Unfortunately, this problem is
far from trivial, as the number of consensus nodes can grow
to very high figures. At the time of writing, 800K consensus
nodes are being reported1 for the Ethereum blockchain. This

1History of daily active validators: https://beaconcha.in/charts/validators

causes major scalability issues. Involving this number of nodes
into concurrent dissemination through a conventional method,
such as flooding, would certainly result in the depletion of
network resources.

In order to address this, the entire set of consensus nodes
is usually divided into committees. Each committee votes
at a specific point in time, influencing the determination of
the blockchain state as it has progressed until that particular
moment. Such committees are formed in an ephemeral fashion.
Once the voting procedure concludes, committees have already
fulfilled their objectives and are subsequently disbanded.

Our work is centered on creating a substrate that facilitates
efficient message dissemination among groups of consensus
nodes. We specifically focus on the Ethereum blockchain [11],
presenting the problem within its context and adopting its
terminology.

The contributions of this paper are twofold:

1) We propose CLIQUESENSUS, a protocol that clusters
nodes into small, ephemeral overlays, with each overlay
corresponding to a distinct committee. The constructed
overlays are structured as cliques, offering desirable
properties in terms of dissemination speed and reduced
message overhead.

2) We analyze and simulate the existing approach adopted
by Ethereum, replicating the message dissemination pro-
cedure and its current configuration for network sizes up
to 220 nodes. These simulations allow for a comprehen-
sive comparison with our proposed protocol.

The rest of this paper is structured as follows. Section II
lays down the necessary background, outlining the Ethereum
2.0 components that are relevant to our research, explaining
its dissemination approach, and pointing out the networking
concerns stemming from its adopted approach. Section III
presents our system model. In Section IV we elaborate on
our protocol’s design, describing its operations in detail and
providing the rationale behind our design decisions. An eval-
uation of our protocol is provided in Section V. Section VI
surveys the related work, and Section VII concludes our work.

https://beaconcha.in/charts/validators

II. BACKGROUND

Our work focuses on the PoS consensus protocol of
Ethereum 2.0. Ethereum initiated its transition to PoS with
the launch of the Beacon Chain component on December 1st,
2020, running alongside the seminal Proof-of-Work mecha-
nism of Ethereum. The definite switch to the new consensus
mechanism took place on September 15th, 2022, on an up-
grade event coined as The Merge2. In the context of this work,
when we mention Ethereum, we are specifically referring to
the post-merge Ethereum 2.0.

A. Ethereum Consensus
Consensus in Ethereum is collaboratively carried out by

a large number of decentralized nodes, known as validators.
Anyone can start a validator by staking 32 ETH. The initial
stake value opts to achieve Sybil resistance, while preserving
decentralization, considering consensus speed and message
overhead.

In Ethereum, time is divided into epochs, with each epoch
further divided into slots. Each slot has a duration of 12
seconds, and each epoch consists of 32 slots (6.4 minutes).
All validators contribute to consensus, being assigned specific
roles in each epoch. By the end of an epoch, validators are
reshuffled and their roles are pseudorandomly assigned anew.

More specifically, the following roles are being assigned.
First, precisely one validator is appointed block proposer per
slot, responsible for proposing a block in the respective slot.
The validity of this block is subsequently attested (i.e., voted
for) by other validators. Second, and in order to produce the
aforementioned attestations, all validators are designated to
serve as attesters exactly once per epoch. In fact they are
equally distributed (or ±1, to accommodate uneven division)
across all 32 slots of the epoch. All attesters assigned to
a given slot are further split up into as many equal-sized
committees as possible, of no less than 128 members each,
with a maximum of 64 committees per slot. Finally, a number
of validators are additionally selected as aggregators for an
epoch, which entails aggregating duties alongside the voting
process. Aggregator selection follows a probabilistic approach,
aiming for an average of 16 aggregators per committee, per
slot.

Given that there should be at least one committee per slot,
and each committee should have at least 128 validators, a
bare minimum of 128× 32 = 4096 validators are required for
Ethereum to operate. Currently, the count of active validators
stands at 800K, overwhelmingly exceeding that bare mini-
mum. That is, there are 25K active validators associated with
each slot, corresponding to 64 committees per slot, with each
committee comprising 390 validators. It should be pointed out
that the number of committees per slot is already maxed out
at 64, which we will consider fixed for the rest of this paper.

B. Shuffling Algorithm
Splitting up validators into equal-sized subsets to be ap-

pointed attesters in the respective slots, is achieved through

2The Merge https://ethereum.org/en/roadmap/merge

an intricate shuffling algorithm, known as swap-or-not shuf-
fling [12]. This algorithm constitutes a crucial element for the
operation of Ethereum, as well as for our work.

Given a list of elements in some initial order, this algorithm
shuffles the list into a pseudorandom, yet deterministic, per-
mutation. Given that the list of validators is publicly known
through the staking process (i.e., their public keys and staked
amounts are listed on-chain), every validator executes this
algorithm locally to figure out its assigned committee for the
current epoch.

The interesting property of this algorithm is that it can
also be run selectively for a single element, and in fact in
both directions. That is, one may selectively compute the new
index of a given validator, as well as selectively identify which
validator will acquire a given index after shuffling, without
having to compute the complete permutation for all 800K
validators.

Effectively, the swap-or-not shuffling algorithm constitutes a
method for reshuffling validators into committees of precisely
equal size in each new epoch, allowing each validator to figure
out its currently assigned role in a very lightweight manner.

C. Block Generation

Block generation is carried out in three phases, all taking
place in a single slot:
Proposing: The block proposer generates a new block and

proposes it to the entire network by disseminating it to
all validators.

Attesting: Attesters of this slot convey their attestations to the
aggegators of their respective committees. As the identity
of aggregators is not publicly disclosed, attestations have
to be disseminated to a much broader group of validators,
effectively also reaching the target aggregators.

Aggregating: Aggregators of this slot disseminate a message
with aggregated attestations to all validators. Again, the
goal is to reach the next slot’s block proposer, however
as its identity is not disclosed, aggregations should reach
the entire network of validators.

Of these, the disseminations during the first and last phases
cannot be circumvented, as it is a consensus requirement that
the entire population of validators be reached.

The disseminations, however, taking place during the second
phase, can be substantially improved compared to the currently
adopted approach, lowering network overhead by orders of
magnitude and speeding up the dissemination of attestations,
yet offering high reliability guarantees for message delivery.
This is the scope of our work.

D. Dissemination of Attestations: Current Approach

Ethereum employs the GossipSub protocol [13] for dissemi-
nating messages. GossipSub is a distributed Publish/Subscribe
(pub/sub) protocol facilitating the establishment of interest-
specific channels (topics), ensuring message exchange gets
conducted exclusively amongst nodes interested in those par-
ticular topics.

https://ethereum.org/en/roadmap/merge

The operation of GossipSub can be synopsized in the
following three main features:

1) Nodes maintain distinct bidirectional links (approxi-
mately eight per node) for each pub/sub topic, forming
meshes that are utilized in rapid push-based dissemina-
tion.

2) Periodically, each node performs gossip with other partic-
ipants in its subscribed topics to share missed messages.

3) Each node maintains individual scores for connected
peers, evaluating their positive and negative behavior.
Mitigation strategies are used to address potential ma-
licious behavior.

Ethereum establishes 64 topics for the dissemination of
attestations, forming the communications backbone of the
corresponding 64 committees of each epoch. Each validator
randomly picks and joins two topics, establishing eight bidi-
rectional links with arbitrary other validators in these topics. In
order to keep topic membership fresh and balanced, validators
leave their topics and randomly join new ones every 256
epochs.

A validator is informed regarding its upcoming role as an
attester—and possibly also aggregator—at least one epoch in
advance. This period allows it to prepare for vote dissemina-
tion. Attesters assigned to committee C ∈ [0, 63] of any slot
in the following epoch, simply need to ensure they have a link
to at least one validator of topic C, which they will use as a
gateway to publish their attestations to that topic. Aggregators
of committee C of any slot of the following epoch need to
also join that topic (in addition to the two they are randomly
subscribed to), in order to receive the attestations that will be
published in that topic.

E. Scalability Concerns

The design employed for attestation dissemination raises
some important scalability concerns, discussed in this section.

First, the topics employed for vote dissemination lack opti-
mization concerning node participation, and overlay structure.
Let the total number of validators be N . There is a fixed
number of 64 topics, and each node participates in two of
them. Therefore, there are 2N

64 nodes per topic on average (that
is, 25K for N = 800K at the time of writing), yet it serves
to transmit messages to an average of only 16 aggregators
per committee. This leads to unnecessary network overhead
as well as increased dissemination time.

Employing a more sophisticated clustering algorithm, build-
ing finer-grained dissemination topics comprising only the
validators actually participating in a committee, would yield
substantial benefits. Indeed, as the total number of distinct
committees in an epoch is 2048 (64 in each of the 32 slots),
and validators are equally distributed across all of them,
each committee comprises precisely N

2048 validators. These
are just 390 nodes for N = 800K. That is, attestations of a
committee could be disseminated by exclusively involving the
390 members of that committee, which is orders of magnitude
smaller than the current setting of 25K nodes in a topic, still
without exposing the identities of the committee’s aggregators.

104

105

106

107

108

109

1010

1011

 16384 32768 65536 131072 262144

N
u

m
b

e
r

o
f

a
tt

e
st

a
ti

o
n
 f

o
rw

a
rd

s

Network size

CliqueSensus (theoretic)
CliqueSensus (experiments)
GossipSub (theoretic)
GossipSub (experiments)

Fig. 1: Number of message forwards to disseminate all attestations
in an epoch, as a function of the network size. Theoretical and
experimental results for CLIQUESENSUS and GossipSub.

On a back-of-the-envelope calculation, when disseminating
a message in a group of M nodes, with the assumptions that (i)
each node has eight neighbors on average, (ii) upon receiving a
message for the first time a node forwards it to all its neighbors
except for the one it received it from, and (iii) eventually all
nodes receive that message, then that message must have been
forwarded roughly 7×M times during its dissemination.

In Ethereum’s current use of GossipSub, every single attes-
tation has to be disseminated in a topic of N

32 nodes, entailing
7N
32 message forwards. For all N attestations in an epoch, a

total of 7N2

32 message forwards are expected to take place.
Indicatively, for N = 800K, this number rises to 140 billion
forwards. Using finer-grained clustering of validators into 2048
distinct committees, each dissemination would involve 7N

2048

forwards, entailing a total of 7N2

2048 message forwards per epoch,
a 64-fold fewer messages. For N = 800K, this translates
to 2.1 billion forwards.

In fact our proposed protocol achieves even better results.
Given the small size of committees (a few hundred nodes), and
the requirement for all-to-all communication among them, we
organize them into cliques, therefore requiring only M − 1
messages for a single attestation’s dissemination in a com-
mittee of M nodes. For N attestations in committees of
N

2048 nodes, this implies a total of N2

2048 attestation forwards
per epoch. This is an astonishing order of 448 times fewer
message forwards compared to Ethereum’s current approach.
For N = 800K this comes down to 311 million messages.

Figure 1 plots the message estimation formulas derived
above for the two protocols, along with measured data from
our simulations with 2i nodes, for i ∈ [14, 18]. The theoretical
and experimental results showing a remarkable accordance
between theory and practice.

A second concern is that the overlay includes validators that
are mostly not part of the committee performing the ongoing
dissemination. Consequently, an external validator may lack
the incentives to promptly disseminate a vote from a validator
belonging to another committee.

The design of our protocol takes the aforementioned design
concerns into account, resulting into a protocol better suited
for this specific use case.

III. SYSTEM MODEL

We consider a set of N nodes connected over a routed
infrastructure, enabling the communication between any pair
of them based solely on the receiver’s network address (i.e.,
its IP address and port).

Each node has a public/private key pair. A node’s public
key also serves as its unique ID. Public keys are registered in
a public trusted repository, such as a public blockchain. Thus,
the identities of the entire set of nodes are globally known. Yet
their IP addresses are not known, let alone they may change
at any time.

The network address of a node is accessible through link
records generated by the node itself. A link record, or simply
link, is a data structure including the node’s public key, its
network address, and a sequence number to distinguish fresh
links from obsolete ones. To prevent masquerade attacks, node
links are signed by their owner at creation time.

We assume K equal-sized committees, with each node
being associated with exactly one of them. We assume a
global order on nodes, determining the committee a node is
associated with and its rank within that committee. Given
a node’s public key, anyone may locally infer the node’s
committee and its rank therein, at a negligible computational
cost.

The global order is determined by a swap-or-not shuffling
algorithm (see Section II-B) and a global seed. This seed is
updated by some external oracle periodically, with a period
corresponding to a consensus protocol’s epoch, effectuating a
permutation of nodes into a new order. Consequently, nodes
are reshuffled across all K committees in each new epoch.

We assume the nodes and the network infrastructure to pos-
sess a degree of stability. Although sporadic system staggering
or network congestion may lead to minor message delays,
we presume that registered nodes are highly incentivized to
promptly resolve these transient issues, ensuring seamless
participation in the system.

The goal is for nodes to discover all other members of the
same committee. In other words, the goal is to let nodes self-
organize into a topology comprising one clique per committee.
At epoch change, nodes should automatically drop their previ-
ous committees, and cluster together anew to reflect their new
committee associations.

It is crucial for this process to be completed during a
preparation period, which coincides with an epoch’s duration.
The shuffling algorithm produces a new permutation at the
beginning of each epoch to be used in the subsequent epoch.
This gives nodes one epoch’s time to build the target topology,
forming the corresponding links among themselves.

IV. THE CLIQUESENSUS PROTOCOL

The ultimate goal of CLIQUESENSUS is to let nodes be-
longing to the same committee self-organize into cliques. This
should be achieved fast enough for committee cliques to be in
place before the next epoch starts. And it should restart with
every new epoch, to get the overlay ready for the subsequent
epoch.

Clique Layer

Navigation Layer

Peer Sampling
Layer

Links to random nodes

Links to committee nodes

Fig. 2: CLIQUESENSUS architecture as a three-layer protocol. Each
layer constitutes a distinct gossiping protocol, maintaining its own
list of neighbors and gossiping with them. Lower layers help higher
layers by equipping them with links from their own neighbors.

This is a three-faceted endeavor. First, nodes need to form
and maintain a single connected overlay, preventing them from
getting seggregated into disjoint components, and constituting
the basis on which to perform peer discovery. Second, there
should be a mechanism to facilitate nodes to “navigate”
towards other nodes of the same committee. Third, nodes
within a committee should help each other get to know all
members of their committee.

CLIQUESENSUS addresses the aforementioned goals by
deploying three distinct gossiping protocols, depicted as three
layers in Figure 2. Each node maintains, separately per layer, a
list of links to other nodes, its neighbors, collectively known as
the node’s view of the network. On behalf of each layer, each
node periodically performs gossip, that is, it contacts one of
its neighbors in that layer and they exchange a few links in an
effort to improve their views. In CLIQUESENSUS, the three
layers are closely intertwined and operate in a cooperative
manner, assisting each other in improving their views and
reaching their goals faster.

Intuitively, CLIQUESENSUS works as follows. At the be-
ginning of each new epoch, a node has no other neighbors
than a set of links to random peers provided by the peer-
sampling layer. This layer is used for peer discovery. With
each gossip exchange, the node progressively gets closer to
contacting nodes within its own committee (navigation layer).
Once nodes of the same committee meet, they drastically help
each other so that they promptly become aware of all nodes
in their committee (clique layer).

The following sections detail the gossiping layers compris-
ing CLIQUESENSUS, discussing their rationales and reasoning
on their design choices. We present them in a bottom-up order.

A. Peer Sampling Layer

Peer Sampling protocols [14] form a well-studied family
of gossiping protocols known for maintaining robust P2P
overlays in a self-organizing manner and with strong self-
healing properties.

The Peer Sampling layer serves two primary functions.
First, it guarantees that the entire set of nodes remains con-
nected in a single connected component. Second, it constitutes
a continuous source of random peer samples, that is, fresh
links to randomly chosen peers among all alive nodes in the
network. The continuous link provision ensures the systematic
replacement of old—and possibly obsolete—links by newly
acquired, fresh links. This is key to peer discovery.

We have opted to use the SecureCyclon [15] version of
the Cyclon protocol [16], a popular representative of the
peer-sampling protocol family. Cyclon is highly scalable and
lightweight in network resources, as each node is only required
to retain a very small, fixed-sized view and to engage in small
gossip exchanges once per cycle, irrespectively of the network
size. The SecureCyclon flavor of the protocol enhances our
design with resilience against malicious actions, which is
particularly important in the inherently hostile environment
of blockchain systems.

As shown in [16], the links in Cyclon have an average
lifespan equal to the configured view length. To achieve a high
link refresh rate, we opted for a low view length. As shown
in our experiments, a Cyclon view length of 8 is sufficient for
achieving rapid convergence in our protocol.

It should be noted that the Peer Sampling layer is the only
one of the three layers that retains its view when a new
epoch starts. The other two layers discard their views and
start rebuilding them from scratch. This is thanks to the self-
healing proerties of the Peer Sampling layer, removing stale
links of departed nodes, fully incorporating newly joined nodes
into the overlay, replacing old and invalid links of nodes (e.g.,
if their IP address changed) with fresh ones, and keeping an
equal representation of all nodes in the overlay with uniformly
random connectivity.

B. Navigation Layer

The Navigation layer helps nodes navigate through the
overlay to reach nodes of the same committee in a timely
manner.

Rather than letting nodes come across same-committee
peers relying purely on random encounters, which could take
unpredictably long given the high number of 2048 committees,
the Navigation layer defines a proximity metric by which
nodes progressively get closer to their same-committee peers,
and eventually connect to them.

This layer employs Vicinity [17], a gossiping protocol that
organizes an initially arbitrarily connected overlay into a target
structure. The target structure is defined through a proximity
metric, which quantifies some notion of proximity between
any pair of nodes.

Following the classic gossiping paradigm, each node main-
tains a small number of neighbors and periodically gossips
with one of them to exchange a few links. Both nodes aim
to discover neighbors of as close proximity as possible. As-
suming a transitive property in the specified proximity metric,
the closer a node gets to its neighborhood of proximal peers,
the higher its chances to discover even more of them, as its

current neighbors must have also discovered other nodes in
that same vicinity.

In CLIQUESENSUS, the Navigation layer models commit-
tees as vertices in a ring structure, enumerated from 0 to 2047,
and defines the one-dimensional Euclidean distance, modulo
2048, as the Vicinity proximity metric. A node’s goal is to
pick neighbors belonging to committees close to its own. With
each node sharing the same objective, the probability of a
node acquiring neighbors from its committee steadily rises
with the progression of cycles, as it gradually gets connected
with neighbors closer to its committee.

More specifically, when two nodes are gossiping, the sender
first incorporates all its current Peer Sampling neighbors in its
Navigation view, and subsequently picks to send the peers that
are closest to the receiver’s committee. This way, every time a
node gossips, either on its own initiative or in response to the
gossip request of another node, it is exposed both to the other
node’s accummulated proximal link concentration, as well as
to its own and the other node’s random entropy stemming from
the links in their Peer Sampling layers. The former accelerates
clustering once the topology has started forming, while the
latter plays a crucial jumpstart role in the early stages of
clustering, by offering potential shortcuts leading nodes very
close to their committees.

We deviate from the standard Vicinity protocol in two
ways. First, given the ephemeral nature of clustering in our
usecase, nodes do not need to discard any neighbors at
the Navigation layer while clustering is underway. They are
altogether discarded, however, when a new epoch starts and
the clustering procedure commences all over again.

The second deviation is that, although nodes get to acquire
neighbors of the same committee, they do not store them in the
Navigation layer view. Instead, they hand them directly over
to the Clique layer, discussed in the following section. The
rationale behind this decision is that the Navigation layer’s
goal is to build and strengthen inter-committee paths, to point
nodes of other committees in the right direction, rather than
getting isolated within one’s committee.

Finally, a node decides whom to contact for gossiping by
picking its closest proximity neighbor. However, to maximize
mingling diversity, a node does not contact the same neighbor
twice before all other neighbors have also been contacted.

As far as network resources are concerned, the Navigation
layer is extremely lightweight. As we will see in our evaluation
(Section V), a surprisingly small value of gN = 3 is sufficient
for CLIQUESENSUS to converge fast to the target clustering.
That is, in each gossip exchange, each node sends as few
as three links to the other party, consequently exchanging
negligibly small messages.

C. Clique Layer

The Clique layer enables nodes of the same committee to
share their knowledge on committee membership, effectively
letting nodes of the same committee self-organize into a clique
structure.

0.0001

0.001

0.01

0.1

1

10

100

 0 4 8 12 16 20 24 28 32

M
is

si
n

g
 c

o
m

m
it

te
e
 l
in

k
s

(%
)

Slots

220 nodes (1048576)
219 nodes (524288)
218 nodes (262144)
217 nodes (131072)
216 nodes (65536)
215 nodes (32768)
214 nodes (16384)

Fig. 3: Percentage of committee links still missing from the network.
Seven network sizes are considered (2i nodes for i ∈ [14, 20]) , with
three individual runs for each. Different runs of the same configura-
tion exhibit hardly any deviation, demonstrating the protocol’s highly
predictable behavior.

The operation of the Clique layer can be outlined as follows.
Each node maintains in its Clique layer’s view all peers of
the same committee it has discovered so far. This discovery is
initially triggered by the Navigation layer, which, as explained
in the previous section, feeds all same-committee peers it gets
to see into the Clique layer’s view. Given that the Navigation
layer incorporates all links acquired from the Peer sampling
layer, the Clique layer also peeks into the acquired random
links for potential matches with its committee. Gossiping is
triggered periodically, by the Clique layer picking one of its
neighbors at random.

Clique view synchronization leverages the global ordering
provided by the shuffling algorithm (Section II-B), and more
specifically the fact that for any given node, one can infer:
(i) which committee it currently belongs to, and (ii) what
its rank within that committee is. When gossiping in this
layer, nodes also exchange bitmaps reporting which committee
members they already know and which ones they are still
missing. This also entails that a gossip exchange involves three
messages. A first one from the initiator carrying its bitmap,
a second one returning the receiver’s bitmap and any links
the initiator is missing, and finally a third message from the
initiator providing links the receiver is missing.

The selection of which neighbor to gossip with is made in a
round-robin fashion, in a random initial order. This maximizes
the diversity of contacted nodes, thereby optimizing informa-
tion exchange. Moreover, it accelerates the incorporation of
nodes that were slow in discovering committee members.

Finally, the Clique layer discards its entire view by the start
of a new epoch and starts building it all over again. This
is an obvious decision, as the links of a past and disbanded
committee are of no use in a new epoch.

V. EVALUATION

We implemented both CLIQUESENSUS and GossipSub on
the PeerNet Simulator [18], a fork of the popular event-driven
PeerSim Simulator [19], and we conducted an extensive set
of experiments to assess their individual and comparative
performance.

A. Experimental Setup

For all communication between nodes we simulated network
latencies based on the WonderNetwork traces [20]. These
traces report latencies from a set of 250 servers distributed
globally, which recorded the round-trip times among all pairs
on an hourly basis for an entire day in 2020.

We implemented and simulated GossipSub based on the
specifications detailed in [21]. We parameterized GossipSub
by adopting the values provided by the Ethereum specifica-
tions [22], as described in Section IV-A. We simulated the core
GossipSub version 1.0. While we did not incorporate any of
the security specifications from version 1.1, we did implement
flood publishing, which has a positive impact on the message
dissemination speed of GossipSub.

The current peer discovery mechanism in Ethereum is
Discv5 [23], which utilizes a Kademlia-based recursive
lookup operation for peer sampling. Instead of implementing
and deploying Kademlia, we initialized each GossipSub node
with 10 links to other nodes in its committee. Given that links
are bidirectional, nodes ended up having on average 20 random
neighbors each within their respective committees, which is
sufficient to fulfill the requirements of the GossipSub protocol.

We establish a vanilla configuration of our protocol as a
point of reference, which aims for message efficiency by
achieving rapid convergence with lightweight messages. In
our vanilla configuration, every layer operates at the same
frequency, gossiping once per cycle. The cycle is defined
to coincide with an Ethereum slot (i.e., 12 seconds). The
Peer Sampling layer is configured with a small view length
of 8 neighbors. Finally, when gossiping, nodes in the Peer
Sampling and Navigation layers send as few as gPS = 2 and
gN = 3 links, parameters known as the gossip length.

B. Convergence Evaluation

Timely convergence is the most important requirement in
our usecase. We show that, even at its most lightweight con-
figuration, CLIQUESENSUS manages to organize committees
into cliques in just half of the required time, that is, within
half an epoch.

Figure 3 shows the number of committee links nodes are
still missing on average in the course of time, for network
sizes of up to one million nodes (specifically, for 2i nodes
with i ∈ [14, 20]). A node should have 127 links to all
other members in its committee. Initially all nodes have no
committee links (missing all 127 of them), but they gradually
discover committee neighbors and they eventually get to know
them all. The evolution of all experiments is very fast.

Two important observations can be made in these experi-
ments. First, different runs of the same configurations exhibit
almost identical convergence, which demonstrates a highly
predictable behavior for our protocol. Second, convergence
time increases linearly at an exponential increase of the
network size, demonstrating a strong scalability.

Figure 4 presents the time required for a fully converged
overlay to emerge, as a function of the network size (in
logarithmic scale). The time required for full convergence

 0

 4

 8

 12

 16

 20

 24

 28

 32

16384 32768 65536 131072 262144 524288 1048576

S
lo

ts
 t

o
 f

u
lly

 c
o
n

v
e
rg

e

Network size

Fig. 4: Number of slots required for all cliques to be formed, for
network sizes from 16K to 1M nodes (2i with i ∈ [14, 20]).

0.0001

0.001

0.01

0.1

1

10

100

 0 4 8 12 16 20 24 28 32

late join time

M
is

si
n

g
 c

o
m

m
it

te
e
 l
in

k
s

(%
)

Slots

218 nodes (262144)
217 nodes (131072)
216 nodes (65536)
215 nodes (32768)
214 nodes (16384)

Fig. 5: Convergence for nodes joining late. In these experiments 2048
nodes join at slot 20.

is shown to closely follow the function f(x) = log2x − 2,
confirming CLIQUESENSUS’ logarithmic scalability. This in-
dicates successful utilization in extremely large networks,
achieving full convergence for several million nodes long
before the end of an epoch.

Finally, it is also important to assess the convergence speed
of CLIQUESENSUS when individual nodes join late. Figure 5
presents experiments in which 2048 nodes have been held
back, joining at slot 20. As expected their convergence is
faster than that of a full network’s cold start, as new nodes
join already formed committee overlays. This demonstrates the
efficiency of the Navigation layer, which leads these nodes via
educated paths to their respective committees.

C. Gossip Frequencies

In this set of experiments we explore the effect of each indi-
vidual layer’s gossiping frequency on the overall convergence
speed. We do so by modifying the gossiping frequency of one
layer at a time, while keeping the other layers’ frequencies
constant and equal to their default value in the vanilla version,
that is, one cycle per slot.

Figure 6 presents these experiments, for N = 262144. It is
clear that the Navigation layer exhibits the most significant im-
provement when gossiping at a higher frequency. Conversely,
the Peer Sampling layer’s gossiping frequency, does not appear
to affect convergence speed. This observation suggests that
the random links provided by the Peer Sampling layer at the
start of a new epoch constitutes a sufficient basis to build the

 0

 4

 8

 12

 16

 20

 24

 28

 32

0.330.5 1 2 3 4

S
lo

ts
 t

o
 f

u
lly

 c
o
n

v
e
rg

e

Gossiping cycles per slot

Nodes:262144

Clique
Navigation

Peer Sampling

Fig. 6: Number of slots required for all cliques to be formed, for
various execution frequencies of the three layers. The x-axis indicates
the number of gossiping cycles a given layer executes during a slot.
In our vanilla configuration, each layer executes one cycle per slot.

 0

 4

 8

 12

 16

 20

 24

 28

 32

3 5 10 15 20

S
lo

ts
 t

o
 f

u
lly

 c
o
n

v
e
rg

e

Navigation gossip length

Nodes:262144

Fig. 7: Number of slots required for all cliques to be formed, for
various Navigation layer gossip lengths.

target overlay, however, in later stages exchanging strategically
chosen links plays a more important role than refreshing the
random ones.

When increasing the frequencies of the Navigation and
Clique layers, we initially observe a sharp improvement that
smooths out for even higher frequencies. The flattening of
the slopes underlines the importance of cooperation between
both the Navigation and Clique layers in achieving swift
convergence. Having a high Clique layer frequency, but low
Navigation layer frequency will lead to a slow discovery of
some initial committee members, with a direct negative impact
on the convergence speed. The opposite will lead to a fast
initial discovery, but a slow completion of each individual
clique afterwards. As these two layers are closely coupled,
their gossiping frequencies should be set to nearby values.

D. Gossip Lengths

Figure 7 presents the convergence time for various values
of the Navigation layer’s gossip length, gN , for the network
size N = 262144. As expected, when nodes exchange more
neighbors per gossip at the Navigation layer, the target over-
lays emerge faster.

However, when comparing this against Figure 6, we observe
that there is a higher improvement to gain by doubling the
gossip frequency of the Navigation layer than by increasing
its gossip length from 3 to 20, while the former introduces less

network overhead. Specifically, a gossip length of 20 leads to
the transmission of 40 links for a node per cycle, on average,
considering that each node gossips twice in that period, once
as the initiator and once as recipient. Similarly, by doubling
the gossip frequency with a gossip length of 3, the node will
transmit 12 links per cycle, on average, as it will gossip four
times, resulting in an average of 28 fewer links transmitted.

This observation leads us to the conclusion that, taking
many, small, iterative steps towards a node’s committee is
more effective than making fewer, but larger iterations.

E. Overlay Construction
In this set of experiments we assess the number of mes-

sages sent for overlay construction in CLIQUESENSUS and
GossipSub, considering the network size of N = 262144.

With respect to the CLIQUESENSUS experiments, we initi-
ate the preparation phase as soon as each node has established
links with 8 random other nodes through the Peer Sampling
layer.

In GossipSub, validators learn about each other by ex-
changing pub/sub messages that contain the topics in which
each validator participates. Following the pub/sub message ex-
change, each node attempts to establish approximately 8 mesh
neighbors for its topic by exchanging graft/prune messages.
We allow each topic to achieve a stable state, and when the
dissemination of pub/sub, and graft/prune messages ceases, we
initiate the preparation phase.

Figure 8a presents the number of messages transmitted by
CLIQUESENSUS, sampled ten times per slot. The Navigation
and Clique layers are observed to be generating a stable flow of
messages, which peaks at approximately 520K messages per
slot. The Clique layer starts without transmitting any messages
but catches up by cycle 8, when each validator has acquired
some of its committee members.

Likewise, Figure 8b presents the corresponding messages
for GossipSub. These are the messages triggered by the 16
aggregator nodes per committee, which join the topics of their
committees (appearing as a steep rise at the beginning of slot
zero). Additionally, they include messages that correspond to
nodes which leave their topics and join two new, random
ones once every 256 epochs, according to the Ethereum
specifications.

The cumulative message count of both protocols is pre-
sented in Figure 9. It is evident that our protocol is far more
expensive, with respect to overlay construction, sending about
5.3× 107 more messages than GossipSub in a single epoch.

This result was expected, as CLIQUESENSUS strives to
create fine-grained overlays on the fly, while GossipSub relies
on mostly static, large overlays. As we will see in the fol-
lowing section, the benefits derived from our protocol during
attestation dissemination exceeds by far the cost of overlay
construction.

F. Attestation Dissemination
Figure 10 presents the cumulative disseminated attestation

count for all 2048 committees of an epoch, for both CLIQUE-
SENSUS and GossipSub, for a network of 262144 nodes.

In these experiments, both protocols were left to form their
fully converged topologies. In CLIQUESENSUS, attestation
dissemination occurred through the corresponding committee
cliques, while in GossipSub, each validator was equipped with
10 gateway-links to random nodes from their committee topic.
Upon the completion of topology convergence for both proto-
cols, all validators concurrently initiated the dissemination of
their attestations.

CLIQUESENSUS outperforms GossipSub by a significant
difference. More precisely, CLIQUESENSUS and GossibSub
concluded the dissemination with a total of 16, 256 and 8.29×
106 messages, respectively, per committee. This accounts to
a total of 3.3 × 107 and 1.7 × 1010 messages, respectively,
for the whole network for the entire epoch (Figure 10).
That is, CLIQUESENSUS performs attestation dissemination
by sending 515 times fewer messages than GossipSub.

Therefore, our protocol’s higher network overhead in build-
ing a fine-grained overlay pays off in terms of attestation
disseminations, with network use that is orders of magnitude
lighter. The excessive messages transmitted by CLIQUESEN-
SUS during overlay construction constitute only 1/321 of the
excessive messages transmitted by GossipSub during attesta-
tion dissemination.

Concluding, factoring in both the messages for overlay con-
struction and attestation dissemination, our protocol achieves
attestation dissemination for each epoch by utilizing 191.5
times fewer messages than GossipSub.

G. Message Overhead Estimation

To estimate CLIQUESENSUS message sizes, we perform
an informal analysis of the vanilla setting, based on the
custom types defined in the Ethereum Node Record’s (ENR)
specification [24], for the network size N = 262144.

A link record in CLIQUESENSUS is of fixed size, containing
the following data items: the public key of the node (264 bits),
its IP address (32 bits), its port (16 bits), a sequence number
that distinguishes link versions (64 bits), and a signature (512
bits). This results into a total of 888 bits per link.

On average, a node engages in two gossip exchanges for
each layer per slot, one being the initiator and one the
recipient.

Combining the Peer Sampling and Navigation layers, a node
consistently exchanges 10 link records per slot, on average. An
upper bound for the average number of links exchanged in the
Clique layer is 24 per node, per slot, as observed in Figure 11,
combining for a total of 34 links. Factoring message signatures
(7 × 512 bits), public keys (7 × 264 bits), and Clique layer
bitmaps (2 × 128 bits), we conclude that an average of 4485
bytes are transmitted by a node during each slot.

Notably, as illustrated in Figure 11, outside the peak period,
which only lasts for five slots (between slots 5 and 10), the
Clique layer transmits only one link per gossip, on average,
which leads to a total transmission overhead of 1932 bytes.
This implies negligible network overhead, especially given the
long, 12 sec, duration of each slot.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 4 8 12 16 20 24 28 32

M
e
ss

a
g

e
 n

u
m

b
e
r

Slots

Nodes: 262144

Clique Layer
Navigation Layer

Peer Sampling Layer

(a) CliqueSensus

 1

 10

 100

 1000

 10000

 100000

 1x106

 1x107

 0 4 8 12 16 20 24 28 32

M
e
ss

a
g

e
 n

u
m

b
e
r

Slots

Nodes: 262144

Graft/Prune Messages
Pub-Sub Messages

(b) GossipSub

Fig. 8: Messages exchanged during each slot of the preparation phase, for both GossipSub and our protocol, sampled ten times per slot. The
overlay of GossipSub and the Peer Sampling layer were let to converge before initiating the experiments.

 0

 1x107

 2x107

 3x107

 4x107

 5x107

 6x107

 0 4 8 12 16 20 24 28 32

C
u

m
u

la
ti

v
e
 m

e
ss

a
g

e
 n

u
m

b
e
r

Slots

Nodes: 262144

CliqueSensus
GossipSub

Fig. 9: Overlay construction messages (cumulative) for CLIQUESEN-
SUS and GossipSub, for the entire network.

 1

 100

 10000

 1x106

 1x108

 1x1010

 0 100 200 300 400 500

C
u

m
u

la
ti

v
e
 m

e
ss

a
g

e
 n

u
m

b
e
r

Time (msec)

Nodes: 262144

CliqueSensus
GossipSub

Fig. 10: Attestation dissemination messages (cumulative) for
CLIQUESENSUS and GossipSub, for the entire network. Both pro-
tocols are let to converge, and in GossipSub, validators are equipped
with 10 links to random members of their committee topic.

H. Dissemination Speed

Finally, we compare CLIQUESENSUS and GossipSub with
respect to their performance in attestation dissemination speed.

Figure 12a presents the percentage of not-yet-delivered
attestations (“missing messages”), as well as the percentage of
nodes that have not received all attestations yet (“incomplete
nodes”), in the course of time, for networks of 262144 nodes.
Protocol initialization was conducted in the same way as
in Section V-F. It is evident that the single-hop dissemination
through our clique overlay accelerates attestation dissemi-

 20

 40

 60

 80

 100

 127

 0 4 8 12 16 20 24 28 32

N
u

m
b

e
r

o
f

lin
ks

 e
xc

h
a
n

g
e
d

Slots

Nodes: 262144, Committee size: 128

max
avg
min

Fig. 11: Number of links exchanged in the Clique layer per node,
per bidirectional gossip exchange.

nation, resulting in the faster acquisition of votes by all
validators.

With our approach, all messages have been disseminated
within 216 msec, in contrast to GossipSub’s 273 msec. This
represents a 21% reduction in dissemination time.

Figure 12b presents aggregate results of this type of experi-
ment for various network sizes. It is evident that CLIQUESEN-
SUS consistently outperforms GossipSub across all network
sizes, with more substantial advantages at lower sizes, reaching
up to approximately a 70% drop in dissemination time for
networks of 16384 nodes.

These findings imply that CLIQUESENSUS excels in perfor-
mance, especially when clique sizes become smaller. Conse-
quently, a consensus mechanism utilizing our protocol could
flexibly adapt to smaller committee sizes, particularly when
rapid dissemination is imperative for achieving consensus.

VI. RELATED WORK

The closest literature to our work can be found
in the domain of topic-based distributed pub/sub proto-
cols (e.g.Poldercast [25], Spidercast [26], Tera [27], and
VCube [28]). These works apply the pub/sub paradigm [29] in
distributed settings, establishing topics/channels among nodes
without relying on a centralized orchestration entity. Typically,
such solutions exhibit remarkable scalability, combining the
scalability inherent in P2P approaches, where peers have the

 0.01

 0.1

 1

 10

 100

 0 100 200 300 400 500

M
is

si
n

g
 m

e
ss

a
g

e
s

/
In

co
m

p
le

te
 n

o
d

e
s

(%
)

Time (msec)

Nodes: 262144

CliqueSensus missing messages
CliqueSensus incomplete nodes

GossipSub missing messages
GossipSub incomplete nodes

(a) The course of the dissemination through the voting period.

 50

 100

 150

 200

 250

 300

16384 32768 65536 131072 262144Ti
m

e
 t

o
 d

is
se

m
in

a
te

 a
ll

m
e
ss

a
g

e
s

(m
se

c)

Network size

CliqueSensus
GossipSub

(b) Dissemination times for different network sizes,

Fig. 12: Comparison between CLIQUESENSUS and GossipSub on the speed of attestation dissemination, for a single committee. Both
protocols are left to converge, and in GossipSub, validators are equipped with 10 links to random members of their committee topic.

role of both the client and the server, and the sender-receiver
decoupling of the pub/sub paradigm [30]. Application-level
multicast approaches, such as Scribe [31] and Bayeux [32],
share similar semantics to distributed topic-based pub/sub, and
often fall under the same category.

The diversity of existing approaches shows that there is no
one-fits-all solution. Instead, a group-based messaging solution
should be tailor-made, or carefully adapted to meet the needs
of each individual system.

The work that is most closely aligned with ours is [25],
which introduces a scalable distributed pub/sub approach aim-
ing to establish deterministic topic connectivity, considering
environments with high churn. Similarly to our design, Pold-
ercast is structured as a three-layer protocol. Utilizing Cyclon
as a peer-sampling mechanism, it incorporates a Vicinity-based
middle layer that employs a proximity function aiming to
establish connections in such a way that a node has a sufficient
number of links for each topic, while keeping the sum of all
links it maintains at a moderated level. The top layer constructs
a ring topology for each topic, ensuring topic connectivity.

Another study which focuses on establishing topic connec-
tivity, with scalable average node degree and topic diameter,
for environments with churn is Spidercast [26]. In this ap-
proach, each node employs two heuristics to establish neigh-
bors: first, selecting peers with the most topics in common with
the node, and second, choosing random peers with at least
one topic in common. To maintain an adapted view length,
nodes adjust their neighbor count by adding or removing links,
while considering the view length of their neighbors. This
approach requires each node to retain descriptors for 5% of
the total number of nodes, a sharp contrast to our approach,
which accumulates descriptors for up to approximately 0.05%
of all nodes. Moreover, the experiments in Spidercast were
conducted with a limited node count of up to 8K nodes, which
is notably low given our use case.

Scribe [31] and Bayeux [32] are two approaches which
facilitate multiple individual multicast groups on top of the
Pastry and Tapestry DHTs, respectively. These approaches uti-
lize efficient multicast trees that get formed by merging DHT
routes, enabling rapid, non-redundant message dissemination

within each group. Nonetheless, such approaches suffer from
a single point of failure, in the form of multicast roots, and
the message dissemination of a group may be facilitated by
nodes that are not part of the specific group.

Two centralized pub/sub approaches addressing the frequent
changes in node subscriptions are Dynatops [33] and Dy-
namoth [34]. In Dynatops [33], a group of brokers cooperates
on top of a DHT to facilitate scalable message transmission
that focuses on reducing the required number of hops until
a message reaches its destination. Dynamicity is confronted
by a central entity, which possesses a complete view of
the network, and which continuously runs a function that
distributes subscribers to brokers based on two criteria: interest
similarity and minimizing subscriptions per broker.

Dynamoth [34] utilizes a dynamic number of servers and
load-balancing strategies to confront scenarios where topics
are subject to big changes in their subscriber and publisher
groups. This work establishes load-balancing in two levels:
channel-level rebalancing, which establishes different com-
munication models to confront excessive imbalances among
publisher and subscribers, and system-level rebalancing, re-
sponsible for distributing the load among servers.

An approach that utilizes clique-graphs in the domain of
P2P networks is eQuus [35]. This work introduces a DHT
storage system designed for environments with high churn.
In eQuus, nodes that are close in terms of network com-
munication speed form cliques, sharing the same ID, and
facilitating the storage of identical items. The utilization of
cliques in this approach yields several desirable properties: a
good degree of redundancy, as node failures are offset by other
clique members possessing identical data; swift consistency,
facilitated by the close proximity among clique nodes, which
leads to fast item synchronization; and resilience to churn,
accomplished by restricting communications to the clique-
level during node entry and exit from the network overlay.

VII. CONCLUSION

Considering the problem of distributed voting in PoS-based
blockchains, with a focus on Ethereum 2.0, we have introduced
CLIQUESENSUS, a protocol that organizes consensus nodes

into clique-structured, ephemeral overlay clusters. Through
CLIQUESENSUS, each node begins with an initial set of
randomly selected, up-to-date overlay links, and progressively
navigates through the network to eventually obtain links to the
members of its committee. This behavior arises through self-
organisation, rendering our solution inherently decentralized
and highly scalable.

We evaluate our solution through extensive simulation,
using Ethereum’s current approach, based on GossipSub, as
our point of reference. Our results demonstrate a remarkably
fast convergence speed for our protocol. Moreover, CLIQUE-
SENSUS proves to outperform Ethereum’s current approach
both in the number of messages transmitted and in the overall
message dissemination time.

ACKNOWLEDGEMENTS

This work has been funded and supported by the Ethereum
Foundation, in the context of the Eclipse and DoS-Resilient
Overlays for High-Performance Block Dissemination project.

REFERENCES

[1] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in 2014 USENIX annual technical conference (USENIX ATC
14), 2014, pp. 305–319.

[2] R. Taft, I. Sharif, A. Matei, N. VanBenschoten, J. Lewis, T. Grieger,
K. Niemi, A. Woods, A. Birzin, R. Poss et al., “Cockroachdb: The
resilient geo-distributed sql database,” in Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data. ACM
New York, NY, USA, 2020, pp. 1493–1509.

[3] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild et al., “Spanner:
Google’s globally distributed database,” ACM Transactions on Computer
Systems (TOCS), vol. 31, no. 3, pp. 1–22, 2013.

[4] A. Ailijiang, A. Charapko, and M. Demirbas, “Consensus in the cloud:
Paxos systems demystified,” in 2016 25th International Conference on
Computer Communication and Networks (ICCCN). IEEE, 2016, pp.
1–10.

[5] C. Jentzsch, “Decentralized autonomous organization to automate gov-
ernance,” White paper, November, 2016.

[6] N. Diallo, W. Shi, L. Xu, Z. Gao, L. Chen, Y. Lu, N. Shah, L. Car-
ranco, T.-C. Le, A. B. Surez et al., “egov-dao: A better government
using blockchain based decentralized autonomous organization,” in 2018
International Conference on eDemocracy & eGovernment (ICEDEG).
IEEE, 2018, pp. 166–171.

[7] V. Buterin, D. Hernandez, T. Kamphefner, K. Pham, Z. Qiao, D. Ryan,
J. Sin, Y. Wang, and Y. X. Zhang, “Combining ghost and casper,” arXiv
preprint arXiv:2003.03052, 2020.

[8] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A
provably secure proof-of-stake blockchain protocol,” in Annual interna-
tional cryptology conference. Springer, 2017, pp. 357–388.

[9] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling byzantine agreements for cryptocurrencies,” in Proceedings of
the 26th symposium on operating systems principles, 2017, pp. 51–68.

[10] E. Buchman, “Tendermint: Byzantine fault tolerance in the age of
blockchains,” Ph.D. dissertation, University of Guelph, 2016.

[11] G. Wood et al., “Ethereum: A secure decentralised generalised trans-
action ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp.
1–32, 2014.

[12] V. T. Hoang, B. Morris, and P. Rogaway, “An enciphering scheme based
on a card shuffle,” in Advances in Cryptology – CRYPTO 2012. Springer
Berlin Heidelberg, 2012, pp. 1–13.

[13] D. Vyzovitis, Y. Napora, D. McCormick, D. Dias, and Y. Psaras,
“GossipSub: Attack-resilient message propagation in the Filecoin and
ETH2.0 networks,” arXiv preprint arXiv:2007.02754, 2020.

[14] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van
Steen, “Gossip-based peer sampling,” ACM Transactions on Computer
Systems, vol. 25, no. 3, p. 8–es, 2007.

[15] A. Antonov and S. Voulgaris, “Securecyclon: Dependable peer sam-
pling,” in 2023 IEEE 43rd International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2023, pp. 1–12.

[16] S. Voulgaris, D. Gavidia, and M. van Steen, “CYCLON: Inexpensive
Membership Management for Unstructured P2P Overlays,” Journal of
Network and Systems Management, vol. 13, no. 2, pp. 197–217, June
2005.

[17] S. Voulgaris and M. V. Steen, “Vicinity: A pinch of randomness
brings out the structure,” in Middleware 2013: ACM/IFIP/USENIX 14th
International Middleware Conference, Beijing, China, December 9-13,
2013, Proceedings 14. Springer, 2013, pp. 21–40.

[18] (2011) Peernet simulator. [Online]. Available: https://github.com/
PeerNet

[19] A. Montresor and M. Jelasity, “Peersim: A scalable p2p simulator,” in
2009 IEEE Ninth International Conference on Peer-to-Peer Computing.
IEEE, 2009, pp. 99–100.

[20] (2020) Wonder network traces. [Online]. Available: https://wonderproxy.
com/blog/a-day-in-the-life-of-the-internet/

[21] (2024) Gossipsub specifications. [Online]. Available: https://github.com/
libp2p/specs/tree/master/pubsub/gossipsub

[22] (2024) Ethereum 2.0 specifications p2p. [Online].
Available: https://github.com/ethereum/consensus-specs/blob/dev/specs/
phase0/p2p-interface.md

[23] (2024) Ethereum peer discovery service. [Online]. Available: https:
//github.com/ethereum/devp2p/blob/master/discv5/discv5.md

[24] (2017) Eip-778, ethereum node records (enr) specification. [Online].
Available: https://eips.ethereum.org/EIPS/eip-778

[25] V. Setty, M. Van Steen, R. Vitenberg, and S. Voulgaris, “Poldercast:
Fast, robust, and scalable architecture for p2p topic-based pub/sub,” in
Middleware 2012: ACM/IFIP/USENIX 13th International Middleware
Conference, Montreal, QC, Canada, December 3-7, 2012. Proceedings
13. Springer, 2012, pp. 271–291.

[26] G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg, “Spidercast: a
scalable interest-aware overlay for topic-based pub/sub communication,”
in Proceedings of the 2007 inaugural international conference on
Distributed event-based systems, 2007, pp. 14–25.

[27] R. Baldoni, R. Beraldi, V. Quema, L. Querzoni, and S. Tucci-
Piergiovanni, “Tera: topic-based event routing for peer-to-peer architec-
tures,” in Proceedings of the 2007 inaugural international conference
on Distributed event-based systems, 2007, pp. 2–13.

[28] J. P. de Araujo, L. Arantes, E. P. Duarte Jr, L. A. Rodrigues, and P. Sens,
“Vcube-ps: A causal broadcast topic-based publish/subscribe system,”
Journal of Parallel and Distributed Computing, vol. 125, pp. 18–30,
2019.

[29] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM computing surveys (CSUR),
vol. 35, no. 2, pp. 114–131, 2003.

[30] A.-M. Kermarrec and P. Triantafillou, “Xl peer-to-peer pub/sub systems,”
ACM Computing Surveys (CSUR), vol. 46, no. 2, pp. 1–45, 2013.

[31] M. Castro, P. Druschel, A.-M. Kermarrec, and A. I. Rowstron, “Scribe: A
large-scale and decentralized application-level multicast infrastructure,”
IEEE Journal on Selected Areas in communications, vol. 20, no. 8, pp.
1489–1499, 2002.

[32] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D.
Kubiatowicz, “Bayeux: An architecture for scalable and fault-tolerant
wide-area data dissemination,” in Proceedings of the 11th international
workshop on Network and operating systems support for digital audio
and video, 2001, pp. 11–20.

[33] Y. Zhao, K. Kim, and N. Venkatasubramanian, “Dynatops: A dynamic
topic-based publish/subscribe architecture,” in Proceedings of the 7th
ACM international conference on Distributed event-based systems, 2013,
pp. 75–86.

[34] T. Durieux and M. Monperrus, “Dynamoth: dynamic code synthesis
for automatic program repair,” in Proceedings of the 11th International
Workshop on Automation of Software Test, 2016, pp. 85–91.

[35] T. Locher, S. Schmid, and R. Wattenhofer, “equus: A provably robust
and locality-aware peer-to-peer system,” in Sixth IEEE International
Conference on Peer-to-Peer Computing (P2P’06). IEEE, 2006, pp.
3–11.

https://github.com/PeerNet
https://github.com/PeerNet
https://wonderproxy.com/blog/a-day-in-the-life-of-the-internet/
https://wonderproxy.com/blog/a-day-in-the-life-of-the-internet/
https://github.com/libp2p/specs/tree/master/pubsub/gossipsub
https://github.com/libp2p/specs/tree/master/pubsub/gossipsub
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/p2p-interface.md
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/p2p-interface.md
https://github.com/ethereum/devp2p/blob/master/discv5/discv5.md
https://github.com/ethereum/devp2p/blob/master/discv5/discv5.md
https://eips.ethereum.org/EIPS/eip-778

	Introduction
	Background
	Ethereum Consensus
	Shuffling Algorithm
	Block Generation
	Dissemination of Attestations: Current Approach
	Scalability Concerns

	System Model
	The CliqueSensus Protocol
	Peer Sampling Layer
	Navigation Layer
	Clique Layer

	Evaluation
	Experimental Setup
	Convergence Evaluation
	Gossip Frequencies
	Gossip Lengths
	Overlay Construction
	Attestation Dissemination
	Message Overhead Estimation
	Dissemination Speed

	Related Work
	Conclusion
	References

