CLIQUESENSUS: Ephemeral Overlays for Efficient
Attestation Dissemination in Ethereum 2.0

Alexandros Antonov
aantonov@aueb.gr
Department of Informatics
Athens University of Economics and
Business
Athens, Greece

Abstract

Reaching consensus in Proof-of-Stake (PoS) based consen-
sus protocols, requires supermajority agreement among par-
ticipating validator nodes. Such protocols need significant
network resources due to the concurrent voting of a large
number of consensus nodes. As a solution, these nodes are
divided into committees, with each committee voting indi-
vidually at a dedicated time slot. In this paper, we introduce
CLIQUESENSUS, a protocol that, given a distribution of consen-
sus nodes into committees, lets them self-organize into small,
ephemeral clusters structured in clique topologies, to accel-
erate the voting process, while using only a small fraction
of the network resources required by conventional message
dissemination methods. Our evaluation demonstrates that
our protocol exhibits rapid convergence and operates with
minimal network overhead. We focus on the PoS consensus
algorithm adopted by Ethereum 2.0. In addition to our pro-
tocol, we also analyze and simulate the clustering approach
that Ethereum has adopted, showcasing that our protocol
can reduce validation message dissemination time by 23%
to 70%, while requiring about 190 times fewer validation
message forwards.

Keywords: Blockchains, Proof-of-Stake, Peer-to-Peer, Gos-
siping, Ethereum

1 Introduction

Distributed voting has found usage in a range of decentral-
ized applications, notably in replicated log management and
database replication [15, 27, 29], cloud computing coordina-
tion [7], and Decentralized Autonomous Organization (DAO)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Middleware 25, December 15-19, 2025, Nashville, TN, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

Evangelos Kolyvas
ekolyvas@aueb.gr
Department of Informatics
Athens University of Economics and
Business
Athens, Greece

Spyros Voulgaris
voulgaris@aueb.gr
Department of Informatics
Athens University of Economics and
Business
Athens, Greece

governance [17, 22]. This has been emphatically stressed in
recent years through the widespread adoption of sophis-
ticated consensus protocols in the domain of blockchains,
particularly those behind Proof-of-Stake (PoS) mechanisms.

Blockchains that adopt such protocols typically utilize
wealth distribution to engage a moderated number of nodes
in a consensus voting process, to establish properties such
as liveness and finality [11, 12, 19, 24], These properties are
crucial for the seamless operation and usability of these
blockchains.

In pure Peer-to-Peer (P2P) terms, distributed voting entails
each consensus participant disseminating a single message
(its vote) to all other participants. Unfortunately, this prob-
lem is far from trivial, as the number of nodes participating
in consensus can grow to very high figures. At the time of
writing, 800K consensus nodes are being reported! for the
Ethereum blockchain. This causes major scalability issues.
Involving this number of nodes into concurrent dissemina-
tion through a conventional method, such as flooding, would
certainly result in the depletion of network resources.

In order to address this, the entire set of consensus nodes
is usually divided into committees. Each committee votes
at a specific point in time, influencing the determination of
the blockchain state as it has progressed until that particular
moment. Such committees are formed in an ephemeral fash-
ion. Once the voting procedure has concluded, committees
have already fulfilled their objectives and are subsequently
disbanded.

Our work concentrates on designing and developing a
fully decentralized, self-organizing, dynamic network over-
lay that facilitates the efficient dissemination of messages
within ephemeral, short-lived groups of nodes. We specifi-
cally focus on the Ethereum blockchain [33], presenting the
problem within its context and adopting its terminology.

The contributions of this paper are twofold:

1. We propose CLIQUESENSUS, a protocol that clusters
nodes into small, ephemeral overlays, with each over-
lay corresponding to a distinct committee. The con-
structed overlays are structured as cliques, offering
desirable properties in terms of dissemination speed
and reduced message overhead.

History of daily active validators: https://beaconcha.in/charts/validators

https://doi.org/XXXXXXX.XXXXXXX
https://beaconcha.in/charts/validators

Middleware ’25, December 15-19, 2025, Nashville, TN, USA

2. We analyze and simulate the existing approach adopted
by Ethereum, replicating the message dissemination
procedure and its current configuration for network
sizes up to 2%° nodes. These simulations allow for a
comprehensive comparison with our proposed proto-
col.

Blockchains with validator sets as large as Ethereum’s
are uncommon. This may be due to factors such as stake
delegation or higher staking requirements, as seen in Solana
with 1,400 active validators?, Avalanche with 1,5713, and
Harmony with 292* at the time of writing. Adopting a simi-
lar strategy to Ethereum’s large-scale validator participation
could potentially enhance decentralization, reduce the im-
pact of individual node failures, and limit collusion risks.
However, this paper does not evaluate such design choices.
Instead, we focus solely on Ethereum’s protocol due to its
extensive validator network and the need for parallel voting
at scale.

The rest of this paper is structured as follows. Section 2
lays down the necessary background, outlining the Ethereum
2.0 components relevant to our research, explaining its dis-
semination approach, and pointing out the networking con-
cerns stemming from it. Section 3 presents our system model.
In Section 4 we elaborate on our protocol’s design, describing
its operations in detail and providing the rationale behind
our design decisions. An evaluation of our protocol is pro-
vided in Section 5. Section 6 surveys the related work, and
Section 7 concludes our work.

2 Background

Our work focuses on the PoS consensus protocol of Ethereum
2.0. Ethereum initiated its transition to PoS with the launch
of the Beacon Chain component on December 1st, 2020,
running alongside its original Proof-of-Work mechanism.
The definite switch to the new consensus mechanism took
place on September 15th, 2022, on an upgrade event coined
as The Merge. In the context of this work, when we mention
Ethereum, we are specifically referring to the post-merge
Ethereum 2.0.

2.1 Ethereum Consensus

Consensus in Ethereum is collaboratively carried out by a
large number of decentralized nodes, known as validators.
Anyone can start a validator by staking 32 ETH. The initial
stake value opts to achieve Sybil resistance, while preserving
decentralization, considering consensus speed and message
overhead.

In Ethereum, time is divided into epochs, with each epoch
further divided into slots. Each slot has a duration of 12
seconds, and each epoch consists of 32 slots (6.4 minutes).

2Solana Active Validators: https://solanabeach.io/validators
3 Avalanche Validators: https://subnets.avax.network/validators/dashboard
4Harmony Validators: https://staking.harmony.one/validators/mainnet

Anonymous Author

All validators contribute to consensus, being assigned spe-
cific roles in each epoch. By the end of an epoch, validators
are reshuffled and their roles are pseudorandomly assigned
anew.

More specifically, the following roles are being assigned.
First, precisely one validator is appointed block proposer per
slot, responsible for proposing a block in the respective slot.
The validity of this block is subsequently attested (i.e., voted
for) by other validators. Second, and in order to produce the
aforementioned attestations, all validators are designated to
serve as attesters exactly once per epoch. In fact they are
equally distributed (or +1, to accommodate uneven division)
across all 32 slots of the epoch. All attesters assigned to a
given slot are further split up into as many equal-sized com-
mittees as possible, of no less than 128 members each, with a
maximum of 64 committees per slot. Finally, a number of val-
idators are additionally selected as aggregators for an epoch,
which entails aggregating duties alongside the voting pro-
cess. Aggregator selection follows a probabilistic approach,
aiming for an average of 16 aggregators per committee, per
slot.

Given that there should be at least one committee per slot,
and each committee should have at least 128 validators, a
bare minimum of 128 X 32 = 4096 validators are required
for Ethereum to operate. Currently, the count of active val-
idators stands at 800K, overwhelmingly exceeding that bare
minimum. That is, there are 25K active validators associ-
ated with each slot, corresponding to 64 committees per slot,
with each committee comprising 390 validators. It should
be pointed out that the number of committees per slot is
already maxed out at 64, which we will consider fixed for
the rest of this paper.

2.2 Shuffling Algorithm

Splitting up validators into equal-sized subsets to be ap-
pointed attesters in the respective slots, is achieved through
an intricate shuffling algorithm, known as swap-or-not shuf-
fling [20]. This algorithm constitutes a crucial element for
the operation of Ethereum, as well as for our work.

Given a list of elements in some initial order, this algorithm
shuffles the list into a pseudorandom, yet deterministic, per-
mutation. Given that the list of validators is publicly known
through the staking process (i.e., their public keys and staked
amounts are listed on-chain), every validator executes this
algorithm locally to figure out its assigned committee for the
current epoch.

The interesting property of this algorithm is that it can
also be run selectively for a single element, and in fact in
both directions. That is, one may selectively compute the
new index of a given validator, as well as selectively identify
which validator will acquire a given index after shuffling,
without having to compute the complete permutation for all
800K validators. Effectively, it allows each validator to locally

https://solanabeach.io/validators
https://subnets.avax.network/validators/dashboard
https://staking.harmony.one/validators/mainnet

CLiQUESENsuUs: Ephemeral Overlays for Efficient Attestation Dissemination in Ethereum 2.0

determine its own committee, as well as the committee of
any given node as needed for each epoch.

2.3 Block Generation

Block generation is carried out in three phases, all taking
place in a single slot:

Proposing: The block proposer generates a new block and
proposes it to the entire network by disseminating it
to all validators.

Attesting: Attesters of this slot convey their attestations
to the aggregators of their respective committees. As
the identity of aggregators is not publicly disclosed,
attestations have to be disseminated to a much broader
group of validators, effectively also reaching the target
aggregators.

Aggregating: Aggregators of this slot disseminate a mes-
sage with aggregated attestations to all validators. Again,
the goal is to reach the next slot’s block proposer, how-
ever as its identity is not disclosed, aggregations should
reach the entire network of validators.

Of'these, the disseminations during the first and last phases
cannot be circumvented, as it is a consensus requirement
that the entire population of validators be reached.

The disseminations, however, taking place during the sec-
ond phase, can be substantially improved compared to the
currently adopted approach, lowering network overhead
by orders of magnitude and speeding up the dissemination
of attestations, yet offering high reliability guarantees for
message delivery. This is the scope of our work.

2.4 Dissemination of Attestations: Current
Approach

Ethereum employs the GossipSub protocol [32] for dissemi-
nating messages. GossipSub is a distributed Publish/Subscribe
(pub/sub) protocol facilitating the establishment of interest-
specific channels (topics), ensuring message exchange gets
conducted exclusively amongst nodes interested in those
particular topics.

The operation of GossipSub can be synopsized in the fol-
lowing three main features:

1. Nodes maintain distinct bidirectional links (approxi-
mately eight per node) for each pub/sub topic, forming
meshes that are utilized in rapid push-based dissemi-
nation.

2. Periodically, each node performs gossip with other
participants in its subscribed topics to share missed
messages.

3. Each node maintains individual scores for connected
peers, evaluating their positive and negative behavior,
and retains links only to well-behaved nodes.

Ethereum establishes 64 topics for the dissemination of
attestations, forming the communications backbone of the

Middleware ’25, December 15-19, 2025, Nashville, TN, USA

corresponding 64 committees of each slot. Each validator
randomly selects and joins two topics, establishing eight
bidirectional links with arbitrary other validators in these
topics. In order to keep topic membership fresh and balanced,
validators leave their topics and randomly join new ones
every 256 epochs.

A validator is informed regarding its upcoming role as an
attester—and possibly also aggregator—at least one epoch in
advance. This period allows it to prepare for vote dissemina-
tion. Attesters assigned to committee C € [0, 63] of any slot
in the following epoch, simply need to ensure they have a
link to at least one validator of topic C, which they will use
as a gateway to publish their attestations to that topic. Ag-
gregators of committee C of any slot of the following epoch
need to also join that topic (in addition to the two they are
randomly subscribed to), in order to receive the attestations
that will be published in that topic.

2.5 Scalability Concerns

The current design employed for attestation dissemination
in Ethereum raises some important scalability and incen-
tivization concerns, discussed in this section.

First, the topics employed for vote dissemination lack op-
timization concerning node participation and overlay struc-
ture. Let the total number of validators be N. There is a fixed
number of 64 topics, and each node participates in two of
them. Therefore, there are % nodes per topic on average
(that is, 25K for N = 800K at the time of writing), yet it
serves to transmit messages to an average of only 16 aggre-
gators per committee. This leads to unnecessary network
overhead as well as increased dissemination time.

A more efficient design would cluster validators by their
actual committee memberships. Since there are 2048 distinct
committees per epoch, each with 25)\]% members (about 390
nodes for N = 800K), attestation dissemination could be
confined to committee members, reducing network overhead
considerably, while preserving anonymity.

Ethereum’s current GossipSub implementation requires
7N?

5 message forwards per epoch, or about 140 billion for-

wards for N = 800K. Using finer-grained clustering of val-
7N*

idators into 2048 distinct overlays, will reduce this to 2048

or 2.1 billion forwards—a 64-fold improvement.

In fact our proposed protocol achieves even better results.
By organizing committees into cliques, each attestation dis-
semination requires only M — 1 messages for a committee of
M nodes. This totals for %:8 forwards per epoch, a 448-fold
reduction, totaling 311 million messages for N = 800K.

A second concern is that the overlay includes validators
that are mostly not part of the committee performing the
ongoing dissemination. Consequently, an external validator
may lack the incentives to promptly disseminate a vote from

Middleware ’25, December 15-19, 2025, Nashville, TN, USA

a validator belonging to another committee. Our protocol re-
solves this by restricting communication to only the relevant
committee members.

3 System Model

We consider a set of N nodes connected over a routed infras-
tructure, enabling the communication between any pair of
them based solely on the receiver’s network address (i.e., its
IP address and port).

Each node has a public/private key pair. A node’s public
key also serves as its unique ID. Public keys are registered
in a public trusted repository, such as a public blockchain.
Thus, the identities of the entire set of nodes are globally
known. Yet their IP addresses are not known, let alone they
may change at any time.

The network address of a node is accessible through link
records generated by the node itself. A link record, or simply
link, is a data structure including the node’s public key, its
network address, and a sequence number to distinguish fresh
links from obsolete ones. To prevent masquerade attacks,
node links are signed by their owner at creation time.

We assume validators have synchronized clocks, a require-
ment already enforced by Ethereum clients [4], through the
use of the NTP protocol. NTP is currently widely adopted
across PoS blockchains, though efforts toward more decen-
tralized time synchronization have been explored [9].

We assume K equal-sized committees, with each node
being associated with exactly one of them. We assume a
global order on nodes, determining the committee a node is
associated with and its rank within that committee. Given
a node’s public key, anyone may locally infer the node’s
committee and its rank therein, at a negligible computational
cost.

The global order is determined by a swap-or-not shuffling
algorithm (see Section 2.2) and a global seed. This seed is
updated by some external oracle periodically, with a period
corresponding to a consensus protocol’s epoch, effectuating a
permutation of nodes into a new order. Consequently, nodes
are reshuffled across all K committees in each new epoch.

The goal is for nodes to discover all other members of
the same committee. In other words, the goal is to let nodes
self-organize into a topology comprising one clique per com-
mittee. At epoch change, nodes should automatically drop
their previous committees, and cluster together anew to re-
flect their new committee associations.

It is crucial for this process to be completed during a prepa-
ration period, which coincides with an epoch’s duration. The
shuffling algorithm produces a new permutation at the begin-
ning of each epoch to be used in the subsequent epoch. This
gives nodes one epoch’s time to build the target topology,
forming the corresponding links among themselves.

Anonymous Author

Q
Clique Layer ® o
= N
O;
N o AN Links to committee nodes
Navigation Layer o .. O o
\ o
e N
. e pe
Peer Sampling Q @ Links to random nodes
Layer) —
| S ® N\

Figure 1. CLIQUESENSUs architecture as a three-layer protocol.
Each layer constitutes a distinct gossiping protocol, maintaining
its own list of neighbors and gossiping with them. Lower layers
help higher layers by equipping them with links from their own
neighbors.

4 The CLIQUESENSUS Protocol

The CLIQUESENSUS protocol builds on the system model’s

objective of enabling nodes to discover and self-organize

into one clique per committee. Its design ensures that nodes

quickly form these cliques before the end of each epoch, with

a new reorganization taking place at the start of every epoch.
This is a three-faceted endeavor.

1. First, nodes need to form and maintain a single con-
nected overlay, preventing them from getting seggre-
gated into disjoint components, and constituting the
basis on which to perform peer discovery.

2. Second, there should be a mechanism to facilitate nodes
to “navigate” towards nodes of the same committee.
That is, a notion of committee ordering and proximity
should be introduced.

3. Third, nodes within the same committee should help
each other get to know all members of their committee,
to form a clique.

CLIQUESENsUS addresses the aforementioned goals by de-
ploying three distinct gossiping protocols, depicted as three
layers in Figure 1. Each node maintains, separately per layer,
a list of links to other nodes, its neighbors, collectively known
as the node’s view of the network. On behalf of each layer,
each node periodically performs gossip, that is, it contacts
one of its neighbors in that layer’s view and they exchange
a few links in an effort to improve their views. In CLIQUE-
SENsUSs, the three layers are closely intertwined and operate
in a cooperative manner, assisting each other in improving
their views and reaching their goals faster.

In a nutshell, CLIQUESENSUS works as follows:

o At the beginning of each new epoch, a node has no other
neighbors than a set of links to random peers out of the
entire overlay, provided by the peer-sampling layer.

CLiQUESENsuUs: Ephemeral Overlays for Efficient Attestation Dissemination in Ethereum 2.0

This layer performs random peer sampling for discovering
peers, which it subsequently feeds to the navigation layer,
right above it in Figure 1.

e The navigation layer introduces a notion of proximity
among committees. With each gossip exchange at that
layer, nodes assist each other to discover neighbors at
progressively closer committees to their own. Before long,
each node gets to discover at least some neighbors of the
same committee, which it feeds to the clique layer, the top
layer in Figure 1.

e By gossiping at the clique layer, nodes within the same
committee efficiently share missing links, rapidly complet-
ing the clique overlay.

The following sections detail the gossiping layers compris-
ing CLIQUESENSUS, discussing their rationales and reasoning
on their design choices. We present them in a bottom-up
order.

4.1 Peer Sampling Layer

Peer Sampling protocols [21] form a well-studied family
of gossiping protocols known for maintaining robust P2P
overlays in a self-organizing manner and with strong self-
healing properties.

The Peer Sampling layer serves two primary functions.
First, it guarantees that the entire set of nodes remains con-
nected in a single connected component. Second, it consti-
tutes a continuous source of random peer samples, that is,
fresh links to randomly chosen peers among all alive nodes
in the network. The continuous link provision ensures the
systematic replacement of old—and possibly obsolete—links
by newly acquired, fresh links. This is key to peer discovery.

We have opted to use the SecureCyclon [8] version of
the Cyclon protocol [30], a popular representative of the
peer-sampling protocol family. Cyclon is highly scalable and
lightweight in network resources, as each node is only re-
quired to retain a very small, fixed-sized view and to engage
in small gossip exchanges once per cycle, irrespectively of
the network size.

The SecureCyclon variant of the protocol enforces nodes
to operate in a predefined manner. Specifically, it mandates
that every node in the overlay periodically generates a lim-
ited number of fresh links, as dictated by the protocol. This
mechanism prevents malicious nodes from manipulating the
connections to and from legitimate nodes, thereby inhibit-
ing the formation of hubs by adversaries and ensuring they
cannot dominate legitimate node communications.

SecureCyclon requires a third-party Sybil-resistance mech-
anism to be in place. This requirement is inherently met
by blockchains that employ Proof-of-Stake (PoS) protocols,
where each consensus node must stake a portion of its wealth
to participate in the protocol, and whose identity is publicly
registered on the blockchain.

Middleware ’25, December 15-19, 2025, Nashville, TN, USA

As shown in [30], the links in Cyclon have an average
lifespan equal to the configured view length. To achieve a
high link refresh rate, we opted for a low view length. As
shown in our experiments, a Cyclon view length of 8 is
sufficient for achieving rapid convergence in our protocol.

It should be noted that the Peer Sampling layer is the only
one of the three layers that retains its view when a new
epoch starts. The other two layers discard their views and
start rebuilding them from scratch. This is thanks to the self-
healing properties of the Peer Sampling layer, removing stale
links of departed nodes, fully incorporating newly joined
nodes into the overlay, replacing old and invalid links of
nodes (e.g., if their IP address changed) with fresh ones, and
keeping an equal representation of all nodes in the overlay
with uniformly random connectivity.

4.2 Navigation Layer

The Navigation layer helps nodes navigate through the over-
lay to reach nodes of the same committee in a timely manner.
Rather than letting nodes come across same-committee
peers relying purely on random encounters, which could
take unpredictably long given the high number of 2048
committees, the Navigation layer defines a proximity met-
ric by which nodes progressively get closer to their same-
committee peers, and eventually connect to them.

This layer employs Vicinity [31], a gossiping protocol that
organizes an initially arbitrarily connected overlay into a
structured topology. The target structure is defined through a
proximity metric, which quantifies some notion of proximity
between any pair of nodes.

Following the classic gossiping paradigm, each node main-
tains a small number of neighbors and periodically gossips
with one of them to exchange a few links. Both nodes aim to
discover neighbors of as close proximity as possible. Assum-
ing a transitive property in the specified proximity metric,
the closer a node gets to its neighborhood of proximal peers,
the higher its chances to discover even more of them, as its
current neighbors must have also discovered other nodes in
that same vicinity.

In CLIQUESENSUS, the Navigation layer models committees
as vertices in a ring structure, enumerated from 0 to 2047.
The proximity between two committees is defined as the
Euclidean distance between them in this ring, in modulo
arithmetic. Key to the operation of this layer is the swap-or-
not shuffling algorithm (Section 2.2), which enables nodes to
locally infer any other node’s committee for a given epoch.

A node’s goal is to pick neighbors belonging to committees
increasingly closer to its own, and eventually its own. With
each node sharing the same objective, the probability of a
node acquiring neighbors from its committee steadily rises
with the progression of cycles, as it gradually gets connected
with neighbors closer to its committee.

More specifically, when two nodes are gossiping, the sender
first incorporates all its current Peer Sampling neighbors in

Middleware ’25, December 15-19, 2025, Nashville, TN, USA

its Navigation view, and subsequently picks to send the peers
that are closest to the receiver’s committee. This way, every
time a node gossips, either on its own initiative or in response
to the gossip request of another node, it is exposed both to
the other node’s accummulated proximal link concentration,
as well as to its own and the other node’s random entropy
stemming from the links in their Peer Sampling layers. The
former accelerates clustering once the topology has started
forming, while the latter plays a crucial jumpstart role in
the early stages of clustering, by offering potential shortcuts
leading nodes in the vicinity of their committees.

We deviate from the standard Vicinity protocol in two
ways. First, given the ephemeral nature of clustering in our
use case, nodes do not need to discard any neighbors at the
Navigation layer while clustering is underway. They are
altogether discarded, however, when a new epoch starts and
the clustering procedure commences all over again.

The second deviation is that, although nodes get to acquire
neighbors of the same committee, they do not store them in
the Navigation layer view. Instead, they hand them directly
over to the Clique layer, discussed in the following section.
The rationale behind this decision is that the Navigation
layer’s goal is to build and strengthen inter-committee paths,
to point nodes of other committees in the right direction,
rather than getting isolated within one’s committee.

Finally, a node decides whom to contact for gossiping by
picking its closest proximity neighbor. However, to maxi-
mize mingling diversity, a node does not contact the same
neighbor twice before all other neighbors have also been
contacted, approximating a round-robin iteration.

As far as network resources are concerned, the Naviga-
tion layer is extremely lightweight. As we will see in our
evaluation (Section 5), a surprisingly small value of 3 links
sent to the other party in a gossip exchange is sufficient
for CLIQUESENSUS to converge fast to the target clustering,
effectively exchanging negligibly small messages.

4.3 Clique Layer

The Clique layer enables nodes of the same committee to
share their knowledge on committee membership, effectively
letting nodes of the same committee self-organize into a
clique structure.

The operation of the Clique layer can be outlined as fol-
lows. Each node maintains in its Clique layer’s view all peers
of the same committee it has discovered so far. This discov-
ery is initially triggered by the Navigation layer, which, as
explained in the previous section, feeds all same-committee
peers it gets to see into the Clique layer’s view. Given that
the Navigation layer incorporates all links acquired from
the Peer sampling layer, the Clique layer also peeks into
the acquired random links for potential matches with its
committee. Gossiping is triggered periodically, by the Clique
layer picking one of its neighbors at random.

Anonymous Author

Clique view synchronization leverages the global order-
ing provided by the swap-or-not shuffling algorithm (Sec-
tion 2.2), and more specifically the fact that for any given
node, one can infer: (i) which committee it currently belongs
to, and (ii) what its rank within that committee’s ordering is.
The rank, specifically, allows nodes to encode in the short-
est possible data structure which committee members they
already know and which ones they are still missing, by cre-
ating a bitmap where each committee node’s presence is
represented by a mere single bit. When gossiping in this
layer, nodes also exchange these bitmaps, reporting which
committee members they know, and allowing them to fill
each other’s gaps.

A gossip exchange involves three messages. A first one
from the gossip initiator carrying its bitmap, a second one
returning the receiver’s bitmap and any links the initiator
is missing, and finally a third message from the initiator
providing links the receiver is missing.

The selection of which neighbor to gossip with is made in
a round-robin fashion, in a random initial order. This maxi-
mizes the diversity of contacted nodes, thereby optimizing
information exchange. Moreover, it accelerates the incor-
poration of nodes that were slow in discovering committee
members.

Finally, the Clique layer discards its entire view by the
start of a new epoch and starts building it all over again. This
is an obvious decision, as the links of a past and disbanded
committee are of no use in a new epoch.

4.4 Security Discussion

CliqueSensus’ security is based on two pillars: (1) the on-
chain registration of nodes’ public keys, which also serve as
unique identifiers, and (2) the SecureCyclon protocol. Secure-
Cyclon utilizes unique links signed by their owners, prevent-
ing malicious nodes from arbitrarily forging connections. As
a result, an adversary cannot fake which committee a node
currently serves, cannot impersonate a legitimate node, and
cannot flood any committee with numerous malicious nodes.

Provided that the proportion of links to malicious nodes
remains within safe bounds, each node will begin every
epoch with a valid sample of random peers. However, in the
Navigation layer, malicious nodes could refuse to respond
to gossip requests, or could intentionally provide links of
low utility to legitimate nodes, slowing down the overlay
network’s convergence. Similarly, in the Clique layer, mali-
cious nodes may withhold committee links to delay clique
formation. Nonetheless, nodes unable to fully connect to
their committees can still find legitimate members via the
Navigation layer. As a result, these disruptions are partially
mitigated, as nodes which possess a link to a malicious com-
mittee member, typically already also possess links to nodes
of nearby committees.

In summary, systematic security evaluations should in-
vestigate the extent to which malicious nodes can disrupt

CLiQUESENsuUs: Ephemeral Overlays for Efficient Attestation Dissemination in Ethereum 2.0

T T
220 nodes (1048576)
219 nodes (524288)
2'8 nodes (262144) 7
2'7 nodes (131072)
2'6 nodes (65536)
215 nodes (32768)
214 nodes (16384)

0.1

0.01

Missing committee links (%)

0.001

0.0001

20 24 28 32

Figure 2. Percentage of committee links still missing from the
network. Seven network sizes are considered (2! nodes for i €
[14,20]) , with three individual runs for each. Different runs of the
same configuration exhibit hardly any deviation, demonstrating
the protocol’s highly predictable behavior.

legitimate operations in the navigation layer. Although, this
paper does not provide such assessments, we extensively
evaluate our protocol resistance to churn in Section 5.3.

4.5 Challenges of Integrating with Ethereum

Seamless integration with the Ethereum ecosystem presents
the following implementation challenges:

1. Multi-Client Support: Ethereum supports multiple clients
implemented in different programming languages. De-
ploying the protocol would require simultaneous adop-
tion by all clients, demanding standardization efforts.

2. Malicious Behavior Proofs: SecureCyclon generates
deterministic proofs of malicious behavior, enabling
penalties for misbehaving nodes. Ethereum 2.0 em-
ploys a similar mechanism, known as slashing, at the
consensus layer. Extending this mechanism from the
consensus layer to the network layer would require
protocol-level integration.

5 Evaluation

We implemented both CLIQUESENsUS and GossipSub on the
PeerNet Simulator [1], a fork of the popular event-driven
PeerSim Simulator [26], and we conducted an extensive set
of experiments to assess their individual and comparative
performance.

5.1 Experimental Setup

In order to emulate realistic network latencies between nodes,
we acquired a real-world latency trace publicly available by
WonderNetwork [2], and we used it to model the latencies
between Ethereum nodes.

We implemented and simulated GossipSub based on the
specifications detailed in [6]. We parameterized GossipSub

Middleware ’25, December 15-19, 2025, Nashville, TN, USA

32 T T T T T T T

28 |- -1

24 F E

20 1

Slots to fully converge
S o
T T
1 1

0 1 1 1 1 1 1 1
16384 32768 65536 131072 262144 524288 1048576

Network size

Figure 3. Number of slots required for all cliques to be formed, for
network sizes from 16K to 1M nodes (2! with i € [14, 20]).

by adopting the values provided by the Ethereum specifica-
tions [3], as described in Section 4.1. We simulated the core
GossipSub version 1.0, and incorporated flood publishing
from version 1.1, as it had a positive impact on the message
dissemination speed of GossipSub.

The current peer discovery mechanism in Ethereum is
Discv5 [5], which utilizes a Kademlia-based recursive lookup
operation for peer sampling. Instead of implementing and de-
ploying Kademlia, we initialized each GossipSub node with
10 links to other nodes in its committee. Given that links are
bidirectional, nodes ended up having on average 20 random
neighbors each within their respective committees, which is
sufficient to fulfill the requirements of the GossipSub proto-
col.

We established a vanilla configuration of our protocol as
a point of reference, which aims for message efficiency by
achieving rapid convergence with lightweight messages. In
our vanilla configuration, every layer operates at the same
frequency, gossiping once per cycle. The cycle is defined
to coincide with an Ethereum slot (i.e., 12 seconds). The
Peer Sampling layer is configured with a small view length
of 8 neighbors. Finally, when gossiping, nodes in the Peer
Sampling and Navigation layers send as few as gps = 2 and
gn = 3 links, parameters known as the respective gossip
lengths.

5.2 Convergence Evaluation

Timely convergence is the most important requirement in
our use case. We show that, even at its most lightweight con-
figuration, CLIQUESENSUS manages to organize committees
into cliques in just half of the required time, that is, within
half an epoch.

Figure 2 shows the number of committee links nodes are
still missing on average in the course of time, for network
sizes of up to one million nodes (specifically, for 2! nodes
with i € [14,20]). A node should end up having links to
all other members in its committee. Initially all nodes have

Middleware ’25, December 15-19, 2025, Nashville, TN, USA

no committee links (missing all 100% of them), but they
gradually discover committee neighbors and they eventually
get to know them all. The evolution of all experiments is
very fast.

Two important observations can be made in these experi-
ments. First, different runs of the same configurations exhibit
almost identical convergence, which demonstrates a highly
predictable behavior for our protocol. Second, convergence
time increases linearly at an exponential increase of the net-
work size, demonstrating a strong scalability.

Figure 3 presents the time required for a fully converged
overlay to emerge, as a function of the network size (in
logarithmic scale). The time required for full convergence
is shown to closely follow the function f(x) = logzx + ¢
(with ¢ being approximately —2), confirming CLIQUESENSUS’
logarithmic scalability. This indicates successful utilization
in extremely large networks, achieving full convergence for
several million nodes long before the end of an epoch.

5.3 Convergence in the Presence of Churn

The set of validators during an epoch is fixed, as new val-
idators can only register or deregister at epoch boundaries.
Additionally, validators’ main concern is to remain uninter-
ruptedly online, in order to participate in the protocol and
earn rewards. Failure to do so incurs penalties.

In this context, churn concerns the temporary absence
of nodes, out of this fixed registered set, due to technical
issues (e.g., network delays or transient failures), with nodes
making every effort to reconnect and deliver their votes.

We evaluate churn in two scenarios. The first scenario as-
sesses the impact of independent node failures. The second
one considers nodes that join the network overlay construc-
tion significantly later than expected.

In the first scenario, we simulate sporadic node absence by
randomly removing a percentage p of the nodes in each cycle,
and keeping them disconnected for c cycles, after which they
resume the protocol. We refer to p as the churn rate and to
c as the disconnection duration. At any given moment, a
percentage of p - ¢ of the nodes are disconnected.

Removed nodes do not participate in gossiping, neither
by initiating or by responding to messages, however they
do retain their previous state. Active nodes that attempt to
communicate with disconnected nodes will, instead, try to
connect to the next available node.

Figure 4a shows the results for N = 262144 nodes, with
churn rates up to 10% per slot, and disconnection durations
from 1 to 5 slots. Relatively low churn rates (1-2% per slot)
incur negligible delays in convergence, compared to the no-
churn scenario. With higher churn rates, nodes still converge
to the target topology, albeit with increased delays. Note
that the scenarios that take more than 25 slots to converge
represent extreme churn conditions. For instance for a churn
rate of 10% and disconnections of 5 slots (rightmost line), 50%
of the nodes are offline at any moment. These plots highlight

Anonymous Author

the Navigation layer’s ability in guiding disconnected nodes
via paths that were established while they were absent.

Figure 4b presents experiments in which 2048 nodes have
been held back, joining late, at slot 20. We observe that these
late-joining nodes converge to their committees faster than
the early nodes, within approximately 8 cycles instead of 12-
16 (Figure 2). This is expected, as the already formed overlay
navigates them swiftly to their target committees, much
faster compared to a full network cold start. As observed, all
committees are formed well before the epoch concludes at
slot 32.

5.4 Gossip Frequencies

In this set of experiments we explore the effect of each in-
dividual layer’s gossiping frequency on the overall conver-
gence speed. We do so by modifying the gossiping frequency
of one layer at a time, while keeping the other layers’ fre-
quencies constant and equal to their default values in the
vanilla version, that is, one cycle per slot.

Figure 5 presents these experiments, for N = 262144. It
is clear that the highest improvement is exhibited when
the Navigation layer’s gossiping frequency is boosted. Con-
versely, the Peer Sampling layer’s gossiping frequency does
not appear to affect the overall convergence speed. This ob-
servation suggests that the random links provided by the
Peer Sampling layer at the start of a new epoch constitute a
sufficient basis to build the target overlay, however, in later
stages convergence depends on exchanging strategically cho-
sen links rather than sampling more links at random.

When increasing the frequencies of the Navigation and
Clique layers, we initially observe a sharp improvement that
smooths out for even higher frequencies. The flattening of
the slopes underlines the importance of cooperation between
both the Navigation and Clique layers in achieving swift
convergence. Having a high Clique layer frequency but low
Navigation layer frequency, will lead to the slow discovery
of initial committee members, with a direct negative impact
on the overall convergence speed. The opposite will lead
to a fast initial discovery, but a slow completion of each
individual clique afterwards.

5.5 Gossip Lengths

Figure 6 presents the convergence time for various values of
the Navigation layer’s gossip length, gy, for a network size
of N = 262144 nodes. As expected, when nodes exchange
more neighbors per gossip at the Navigation layer, the target
overlays emerge faster.

However, when comparing this against Figure 5, we ob-
serve that there is a higher improvement to gain by doubling
the gossip frequency of the Navigation layer than by increas-
ing its gossip length from 3 to 20, while the former intro-
duces less network overhead. Specifically, a gossip length
of 20 leads to the transmission of 40 links for a node per
cycle, on average, considering that each node gossips twice

CLiQUESENsuUs: Ephemeral Overlays for Efficient Attestation Dissemination in Ethereum 2.0

Nodes: 262144, Disconnection duration: 1-5 slots

100 T T T T T
- = - Nochurn
10k 1% churn]
g 2% churn
v ——— 5% churn
= 1k = 10% churn
3
g
€ 0.1 F
£
o
S
2 0.01
4
= oo |
0.0001 L L
0 4 8 12 16 20 24 28 32

Slots

(a) Convergence under churn. Churn rate p% means that p% of the nodes
fail per slot and remain disconnected for a duration of 1 (leftmost, thinnest
lines), 2, 3, 4, or 5 (rightmost, thickest lines) slots, when they resume.

Middleware ’25, December 15-19, 2025, Nashville, TN, USA

100 :

0.1 F

0.01 F 8 A .
2'® nodes (262144) \

2'7 nodes (131072)
2'6 nodes (65536) 4
215 nodes (32768)
Iz“ nodes I(16384)

Missing committee links (%)

0.001

0.0001 L L L

0 4 8 12 16 20 24 28 32

Slots

(b) Convergence for nodes joining late. In these experiments 2048 nodes
do not join until slot 20.

Figure 4. CliqueSensus overlay convergence under churn conditions.

Nodes:262144

32 T T T T T
Clique
28 - Navigation b
Peer Sampling —@—
o 24 b -
o
[
g 20 k E
S
= 16 P~ i
2 *— ®
S 12k ' B
%
°
a5 gl .
4 4
0 1 1 1 1 1
0.330.5 1 2 3 4

Gossiping cycles per slot

Figure 5. Number of slots required for all cliques to be formed,
for various execution frequencies of the three layers. The x-axis
indicates the number of gossiping cycles a given layer executes
during a slot. In our vanilla configuration, each layer executes one
cycle per slot.

Nodes:262144
32 T T T T T

28 - —

24 -

20 F . P

Slots to fully converge
>
T
1

0 1 1 1 1 1
3 5 10 15 20

Navigation gossip length

Figure 6. Number of slots required for all cliques to be formed, for
various Navigation layer gossip lengths.

in that period, once as the initiator and once as the recipient.
Similarly, by doubling the gossip frequency with a gossip
length of 3, the node will transmit 12 links per cycle, on
average, as it will gossip four times, leading to 28 fewer links
transmitted.

This observation leads us to the conclusion that, taking
many, small, iterative steps towards a node’s committee is
more effective than making fewer, but larger iterations.

5.6 Overlay Construction

In this set of experiments we assess the number of messages
sent for overlay construction in CLIQUESENSUS and Gossip-
Sub, considering the network size of N = 262144.

With respect to the CLIQUESENSUS experiments, we ini-
tiate the preparation phase as soon as each node has estab-
lished links with 8 random other nodes through the Peer
Sampling layer.

In GossipSub, validators learn about each other by ex-
changing pub/sub messages that contain the topics in which
each validator participates. Following the pub/sub message
exchange, each node attempts to establish approximately
8 mesh neighbors for its topic by exchanging graft/prune
messages. We allow each topic to achieve a stable state, and
when the dissemination of pub/sub, and graft/prune mes-
sages ceases, we initiate the preparation phase.

Figure 7a presents the number of messages transmitted by
CLIQUESENSUS, sampled ten times per slot. The Navigation
and Clique layers are observed to be generating a stable flow
of messages, which peaks at approximately 520K messages
per slot. The Clique layer starts without transmitting any
messages but catches up by cycle 8, when each validator has
acquired some of its committee members.

Likewise, Figure 7b presents the corresponding messages
for GossipSub. These are the messages triggered by the 16 ag-
gregator nodes per committee, which join the topics of their

Middleware ’25, December 15-19, 2025, Nashville, TN, USA

Nodes: 262144
80000 T r

Ciique Layef

<
€ 70000 - Navigation Layer 1
s Peer Sampling Layer = = =
S 60000 - B
o Avdesabuvrdrntrordantovadant st santdANSaan
o 50000 f -
n
[
g 40000 - -
2
[
€ 30000 | B
oy
o
& 20000 F —
Qo
£ L
2 10000 i
0 1 1 1 1 1 1 1
0 4 8 12 16 20 24 28 32

Slots

(a) CliqueSensus

Number of messages per slot tenth

Anonymous Author

Nodes: 262144

1x107 T T T T

T T T
Graft/Prune Messages
Pub-Sub Messages u

1x10° |-
100000 |- : : E
10000
1000

100

Slots

(b) GossipSub

Figure 7. Messages exchanged during each slot of the preparation phase, for both GossipSub and our protocol, sampled ten times per slot.
The overlay of GossipSub and the Peer Sampling layer were let converge before initiating the experiments.

Nodes: 262144

6x107 T T T T T T T
CliqueSensus =
5 sx107 b GossipSub i
Qo
§
S 4x107 - R
@
o
©
2 7
o 3x107 |- -
£
3
=
B 2x107 - B
>
§
S 1x107 |- B
0
0 4 8 12 16 20 24 28 32

Figure 8. Overlay construction messages (cumulative) for CLIQUE-
SENsus and GossipSub, for the entire network.

committees (appearing as a steep rise at the beginning of slot
zero). Additionally, they include messages that correspond
to nodes which leave their topics and join two new, ran-
dom ones once every 256 epochs, according to the Ethereum
specifications.

The cumulative message count of both protocols is pre-
sented in Figure 8. It is evident that our protocol is more
expensive, with respect to overlay construction, requiring
5.5 X 107 messages per epoch compared to the Gossipsub’s
2.5 X 10° messages..

This result was expected, as CLIQUESENSUS strives to cre-
ate fine-grained overlays on the fly, while GossipSub relies
on mostly static, large overlays. As we will see in the follow-
ing sections, the benefits derived from our protocol during
attestation dissemination exceeds by far the cost of overlay
construction.

Nodes: 262144

T T T T

1x10'0 E
.
v
Qo
E 1xi08 +
f=
g r/f
g
v 1x10° | -
OJ
£
L
2 10000 f -«
©
=
£
3 100 f =

CliqueSensus =
GossipSub =—
1 1 1 1 1
0 100 200 300 400 500
Time (msec)

Figure 9. Attestation dissemination messages (cumulative) for
CLIQUESENsUs and GossipSub, for the entire network.

5.7 Attestation Dissemination

Figure 9 presents the cumulative disseminated attestation
count for all 2048 committees of an epoch, for both CLIQUE-
SeENsus and GossipSub, within a network of 262144 nodes.
In these experiments, both protocols were left to form their
fully converged topologies. In CLIQUESENSUS, attestation dis-
semination occurred through the corresponding committee
cliques, while in GossipSub, each validator was equipped
with 10 gateway-links to random nodes from their commit-
tee topic. Upon the completion of topology convergence
for both protocols, all validators concurrently initiated the
dissemination of their attestations.

CLIQUESENSUS outperforms GossipSub by a significant
difference. More precisely, CLIQUESENSUs and GossibSub
concluded the dissemination with a total of 16, 256 and 8.29 X
10° messages, respectively, per committee. This accounts to
a total of 3.3 x 107 and 1.7 x 1010 messages, respectively, for
the whole network for the entire epoch (Figure 9).

CLiQUESENsuUs: Ephemeral Overlays for Efficient Attestation Dissemination in Ethereum 2.0

Nodes: 262144, Committee size: 128

127 T T - -i. T T T T T
I | max —-—
- /] avg
2 100 [; E min - - - 4
g r 1
c .
£ sl o ! . i
3 !]
) I h
£ e j I 7
5 j
] ! e
Q 40 - . e
£ J H
2 i 1
20 - . : -
J g 1
4 i !
et N Wy | | i
0 4 8 12 16 20 24 28 32

Figure 10. Number of links exchanged in the Clique layer per node,
per bidirectional gossip exchange.

5.8 Overall Message Improvement

Factoring in both the messages for overlay construction and
attestation dissemination, CliqueSensus achieves attestation
dissemination for each epoch by utilizing 191.5 times fewer
messages than GossipSub. This demonstrates that the higher
network overhead required to construct a fine-grained over-
lay is compensated by significantly reduced network usage
during attestation dissemination, making it orders of magni-
tude more efficient.

To assess the broader impact of our protocol on Ethereum
block dissemination, we analyze its message efficiency across
all three block generation phases discussed in Section 2.3.

In both the Proposing and Aggregating phases, GossipSub
employs global topics, where all validator nodes participate.
Although our protocol lacks a dedicated mechanism for these
actions, a simple broadcast using 8 links from each node’s
peer-sampling layer achieves equivalent results with an ap-
proximately equal number of messages.

In the Proposing phase, a single node disseminates a mes-
sage to all N validator nodes. For N = 262144, this results in
262144 X 7 X 32 = 5.87 X 107 messages per epoch.

In the Aggregating phase, approximately 16 aggregator
nodes from each of the 64 committees disseminate attestation
aggregation messages to all N nodes. For N = 262144, this
amounts to 16 X 64 X 262144 X 7 X 32 = 6 x 10! messages
per epoch.

Considering the combined number of messages across all
three phases—Proposing, Attesting, Aggregating—we con-
clude that CLIQUESENsUS sends 22% fewer messages than
GossipSub, achieving significant network savings.

5.9 Dissemination Speed

Finally, we compare CLIQUESENSUs and GossipSub with
respect to their performance in attestation dissemination
speed.

Figure 11a presents the percentage of not-yet-delivered
attestations (“missing messages”), as well as the percentage

Middleware ’25, December 15-19, 2025, Nashville, TN, USA

of nodes that have not received all attestations yet (“incom-
plete nodes”), in the course of time, for networks of 262144
nodes. Protocol initialization was conducted in the same way
as in Section 5.7. It is evident that the single-hop dissemi-
nation through our clique overlay accelerates attestation
dissemination, resulting in the faster acquisition of votes by
all validators.

With our approach, all messages have been disseminated
within 216 msec, in contrast to GossipSub’s 273 msec. This
represents a 21% reduction in dissemination time.

Figure 11b presents aggregate results of this type of exper-
iment for various network sizes. It is evident that CLIQUESEN-
sus consistently outperforms GossipSub across all network
sizes, with more substantial advantages at lower sizes, reach-
ing up to approximately a 70% drop in dissemination time
for networks of 16384 nodes.

These findings imply that CLIQUESENsUS excels in perfor-
mance, especially when clique sizes become smaller. Conse-
quently, a consensus mechanism utilizing our protocol could
flexibly adapt to smaller committee sizes, particularly when
rapid dissemination is imperative for achieving consensus.

6 Related Work

The closest literature to our work can be found in the domain
of topic-based distributed pub/sub protocols (e.g., Polder-
Cast [28], Spidercast [14], Tera [10], and VCube [16]). These
works apply the pub/sub paradigm [18] in distributed set-
tings, establishing topics/channels among nodes without
relying on a centralized orchestration entity. Typically, such
solutions exhibit remarkable scalability, combining the scal-
ability inherent in P2P approaches, where peers have the
role of both the client and the server, and the sender-receiver
decoupling of the pub/sub paradigm [23]. Application-level
multicast approaches, such as Scribe [13] and Bayeux [34],
share similar semantics to distributed topic-based pub/sub,
and often fall under the same category.

The diversity of existing approaches shows that there is
no one-fits-all solution. Instead, a group-based messaging
solution should be tailor-made, or carefully adapted to meet
the needs of each individual system.

The work most closely aligned with ours is presented in
PolderCast [28], a scalable distributed publish/subscribe ap-
proach aimed at ensuring guaranteed connectivity within
topics, particularly in environments characterized by high
churn. Similar to our design, PolderCast is structured as
a three-layer protocol, employing vanilla Cyclon for peer
sampling and establishing ring topologies at the top layer.
Despite the structural similarities between the two protocols,
their design and implementation differ significantly as they
address distinct objectives. For instance, (CLIQUESENSUS)
leverages contrived proximity and is fully optimized to en-
able a node to locate all nodes within a group efficiently. In
contrast, PolderCast matches nodes to ensure that each node

Middleware ’25, December 15-19, 2025, Nashville, TN, USA

Nodes: 262144
100

< 5 T
é‘m, =’¢:¢. CIigueSensus rlnissing messages ==
3 ’\\.\ CliqueSensus incomplete nodes =———
2 NN GossipSub missing messages =+ =
£ 10F LN, GossipSub incomplete nodes =—— 7
=3 NN
£ \
8 .
S 1k ‘ g
~ .‘
o .,
& 1
o
2 .
a
GJ - -
S 0.1
o
£
a
= 0.01 1 1 I
0 100 200 300 400 500

Time (msec)

(a) The course of the dissemination through the voting period.

Time to disseminate all messages (msec)

Anonymous Author

300 T T T T T

150 - 1

50 |- B
CliqueSensus —@—
GossipSub —@—
1

16384 32768 65536

131072 262144

Network size

(b) Dissemination times for different network sizes,

Figure 11. Comparison between CLIQUESENSUs and GossipSub on the speed of attestation dissemination, for a single committee. Both
protocols are left to converge, and in GossipSub, validators are equipped with 10 links to random members of their committee topic.

maintains a sufficient number of links per topic, while keep-
ing the total number of links at a moderate level. PolderCast
is designed for scenarios involving multiple topics, where
a node must establish efficient connections across various
topics, even if this process is not rapid. Conversely, CLIQUE-
SeENsusaims to form clique clusters as quickly as possible.
Another study which focuses on establishing topic con-
nectivity, with scalable average node degree and topic di-
ameter, for environments with churn is Spidercast [14]. In
this approach, each node employs two heuristics to estab-
lish neighbors: first, selecting peers with the most topics in
common with the node, and second, choosing random peers
with at least one topic in common. To maintain an adapted
view length, nodes adjust their neighbor count by adding or
removing links, while considering the view length of their
neighbors. This approach requires each node to retain de-
scriptors for 5% of the total number of nodes, a sharp contrast
to our approach, which accumulates descriptors for up to
approximately 0.05% of all nodes. Moreover, the experiments
in Spidercast were conducted with a limited node count of
up to 8K nodes, which is notably low given our use case.
Scribe [13] and Bayeux [34] are two approaches which
facilitate multiple individual multicast groups on top of the
Pastry and Tapestry DHTs, respectively. These approaches
utilize efficient multicast trees that get formed by merging
DHT routes, enabling rapid, non-redundant message dissem-
ination within each group. Nonetheless, such approaches
suffer from a single point of failure, in the form of multicast
roots, and the message dissemination of a group may be
facilitated by nodes that are not part of the specific group.
An approach that utilizes clique-graphs in the domain of
P2P networks is eQuus [25]. This work introduces a DHT
storage system designed for environments with high churn.
In eQuus, nodes that are close in terms of physical network
proximity form cliques, sharing the same ID, and facilitating

the storage of identical items. The utilization of cliques in
this approach yields several desirable properties: a good
degree of redundancy, as node failures are offset by other
clique members possessing identical data; swift consistency,
facilitated by the close proximity among clique nodes, which
leads to fast item synchronization; and resilience to churn,
accomplished by restricting communications to the clique-
level during node entry and exit from the network overlay.

7 Conclusions

Considering the problem of distributed voting in PoS-based
blockchains, with a focus on Ethereum 2.0, we have intro-
duced CLIQUESENSUS, a protocol that organizes consensus
nodes into clique-structured, ephemeral overlay clusters.
Through CLIQUESENSUS, each node begins with an initial set
of randomly selected, up-to-date overlay links, and progres-
sively navigates through the network to eventually obtain
links to the members of its committee. This behavior arises
through self-organisation, rendering our solution inherently
decentralized and highly scalable.

We evaluate our solution through extensive simulations,
scaling up to 22° nodes, using Ethereum’s current approach
based on GossipSub as a benchmark. Our results show that
CLIQUESENSUSs achieves rapid convergence, even under ex-
treme churn conditions, ensuring timely committee forma-
tion and communication.

Moreover, CLIQUESENSUS outperforms Ethereum’s exist-
ing method by transmitting far fewer messages and achieving
faster overall message dissemination.

Acknowledgements

This work has been funded and supported by the Ethereum
Foundation, in the context of the Eclipse and DoS-Resilient
Overlays for High-Performance Block Dissemination project.

CLiQUESENsuUs: Ephemeral Overlays for Efficient Attestation Dissemination in Ethereum 2.0

References

(1]
(2]

(3]
(4]

—
N=)
—

[10

[t

(11]

[12

—

(13]

[14

flan

2011. PeerNet Simulator Repository. https://github.com/PeerNet
2020. Wonder Network Traces. https://wonderproxy.com/blog/a-day-
in-the-life-of-the-internet/

2024. Ethereum 2.0 p2p Specifications. https://github.com/ethereum/
consensus-specs/blob/dev/specs/phase0/p2p-interface.md

2024. Ethereum Geth Client Specifications. https://geth.ethereum.org/
docs/fundamentals/peer-to-peer

2024. Ethereum Peer Discovery Service. https://github.com/ethereum/
devp2p/blob/master/discv5/discv5.md

2024. GossipSub Specifications. https://github.com/libp2p/specs/tree/
master/pubsub/gossipsub

Ailidani Ailijiang, Aleksey Charapko, and Murat Demirbas. 2016. Con-
sensus in the cloud: Paxos systems demystified. In 2016 25th Interna-
tional Conference on Computer Communication and Networks (ICCCN).
IEEE, 1-10.

Alexandros Antonov and Spyros Voulgaris. 2023. SecureCyclon: De-
pendable Peer Sampling. In 2023 IEEE 43rd International Conference on
Distributed Computing Systems (ICDCS). IEEE, 1-12.

Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell,
and Vassilis Zikas. 2019. Ouroboros chronos: Permissionless clock
synchronization via proof-of-stake. Cryptology ePrint Archive (2019).
Roberto Baldoni, Roberto Beraldi, Vivien Quema, Leonardo Querzoni,
and Sara Tucci-Piergiovanni. 2007. TERA: topic-based event routing
for peer-to-peer architectures. In Proceedings of the 2007 inaugural
international conference on Distributed event-based systems. 2—13.
Ethan Buchman. 2016. Tendermint: Byzantine fault tolerance in the age
of blockchains. Ph. D. Dissertation. University of Guelph.

Vitalik Buterin, Diego Hernandez, Thor Kamphefner, Khiem Pham,
Zhi Qiao, Danny Ryan, Juhyeok Sin, Ying Wang, and Yan X Zhang.
2020. Combining GHOST and casper. arXiv preprint arXiv:2003.03052
(2020).

Miguel Castro, Peter Druschel, A-M Kermarrec, and Antony IT Row-
stron. 2002. SCRIBE: A large-scale and decentralized application-level
multicast infrastructure. IEEE Journal on Selected Areas in communica-
tions 20, 8 (2002), 1489-1499.

Gregory Chockler, Roie Melamed, Yoav Tock, and Roman Vitenberg.
2007. Spidercast: a scalable interest-aware overlay for topic-based
pub/sub communication. In Proceedings of the 2007 inaugural interna-
tional conference on Distributed event-based systems. 14-25.

[15] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christo-

pher Frost, Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev,
Christopher Heiser, Peter Hochschild, et al. 2013. Spanner: Google’s
globally distributed database. ACM Transactions on Computer Systems
(TOCS) 31, 3 (2013), 1-22.

[16] Jodo Paulo de Araujo, Luciana Arantes, Elias P Duarte Jr, Luiz A Ro-

(17]

[20]

drigues, and Pierre Sens. 2019. VCube-PS: A causal broadcast topic-
based publish/subscribe system. j. Parallel and Distrib. Comput. 125
(2019), 18-30.

Nour Diallo, Weidong Shi, Lei Xu, Zhimin Gao, Lin Chen, Yang Lu,
Nolan Shah, Larry Carranco, Ton-Chanh Le, Abraham Bez Surez, et al.
2018. eGov-DAO: A better government using blockchain based decen-
tralized autonomous organization. In 2018 International Conference on
eDemocracy & eGovernment (ICEDEG). IEEE, 166—171.

Patrick Th Eugster, Pascal A Felber, Rachid Guerraoui, and Anne-
Marie Kermarrec. 2003. The many faces of publish/subscribe. ACM
computing surveys (CSUR) 35, 2 (2003), 114-131.

Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nick-
olai Zeldovich. 2017. Algorand: Scaling byzantine agreements for
cryptocurrencies. In Proceedings of the 26th symposium on operating
systems principles. 51-68.

Viet Tung Hoang, Ben Morris, and Phillip Rogaway. 2012. An Enci-
phering Scheme Based on a Card Shuffle. In Advances in Cryptology —
CRYPTO 2012. Springer Berlin Heidelberg, 1-13.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Middleware ’25, December 15-19, 2025, Nashville, TN, USA

Mark Jelasity, Spyros Voulgaris, Rachid Guerraoui, Anne-Marie Ker-
marrec, and Maarten van Steen. 2007. Gossip-Based Peer Sampling.
ACM Transactions on Computer Systems 25, 3 (2007), 8—es.

Christoph Jentzsch. 2016. Decentralized autonomous organization to
automate governance. White paper, November (2016).

Anne-Marie Kermarrec and Peter Triantafillou. 2013. Xl peer-to-peer
pub/sub systems. ACM Computing Surveys (CSUR) 46, 2 (2013), 1-45.
Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman
Oliynykov. 2017. Ouroboros: A provably secure proof-of-stake
blockchain protocol. In Annual international cryptology conference.
Springer, 357-388.

Thomas Locher, Stefan Schmid, and Roger Wattenhofer. 2006. eQuus:
A provably robust and locality-aware peer-to-peer system. In Sixth
IEEE International Conference on Peer-to-Peer Computing (P2P°06). IEEE,
3-11.

Alberto Montresor and Mark Jelasity. 2009. PeerSim: A scalable P2P
simulator. In 2009 IEEE Ninth International Conference on Peer-to-Peer
Computing. IEEE, 99-100.

Diego Ongaro and John Ousterhout. 2014. In search of an understand-
able consensus algorithm. In 2014 USENIX annual technical conference
(USENIX ATC 14). 305-319.

Vinay Setty, Maarten Van Steen, Roman Vitenberg, and Spyros Voul-
garis. 2012. Poldercast: Fast, robust, and scalable architecture for P2P
topic-based pub/sub. In Middleware 2012: ACM/IFIP/USENIX 13th Inter-
national Middleware Conference, Montreal, QC, Canada, December 3-7,
2012. Proceedings 13. Springer, 271-291.

Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jor-
dan Lewis, Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin,
Raphael Poss, et al. 2020. Cockroachdb: The resilient geo-distributed
sql database. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. ACM New York, NY, USA, 1493-
1509.

Spyros Voulgaris, Daniela Gavidia, and Maarten van Steen. 2005. CY-
CLON: Inexpensive Membership Management for Unstructured P2P
Overlays. Journal of Network and Systems Management 13, 2 (June
2005), 197-217.

Spyros Voulgaris and Maarten Van Steen. 2013. Vicinity: A
pinch of randomness brings out the structure. In Middleware 2013:
ACM/IFIP/USENIX 14th International Middleware Conference, Beijing,
China, December 9-13, 2013, Proceedings 14. Springer, 21-40.

Dimitris Vyzovitis, Yusef Napora, Dirk McCormick, David Dias, and
Yiannis Psaras. 2020. GossipSub: Attack-resilient message propagation
in the Filecoin and ETH2.0 networks. arXiv preprint arXiv:2007.02754
(2020).

Gavin Wood et al. 2014. Ethereum: A secure decentralised generalised
transaction ledger. Ethereum project yellow paper 151, 2014 (2014),
1-32.

Shelley Q Zhuang, Ben Y Zhao, Anthony D Joseph, Randy H Katz, and
John D Kubiatowicz. 2001. Bayeux: An architecture for scalable and
fault-tolerant wide-area data dissemination. In Proceedings of the 11th
international workshop on Network and operating systems support for
digital audio and video. 11-20.

https://github.com/PeerNet
https://wonderproxy.com/blog/a-day-in-the-life-of-the-internet/
https://wonderproxy.com/blog/a-day-in-the-life-of-the-internet/
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/p2p-interface.md
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/p2p-interface.md
https://geth.ethereum.org/docs/fundamentals/peer-to-peer
https://geth.ethereum.org/docs/fundamentals/peer-to-peer
https://github.com/ethereum/devp2p/blob/master/discv5/discv5.md
https://github.com/ethereum/devp2p/blob/master/discv5/discv5.md
https://github.com/libp2p/specs/tree/master/pubsub/gossipsub
https://github.com/libp2p/specs/tree/master/pubsub/gossipsub

	Abstract
	1 Introduction
	2 Background
	2.1 Ethereum Consensus
	2.2 Shuffling Algorithm
	2.3 Block Generation
	2.4 Dissemination of Attestations: Current Approach
	2.5 Scalability Concerns

	3 System Model
	4 The CliqueSensus Protocol
	4.1 Peer Sampling Layer
	4.2 Navigation Layer
	4.3 Clique Layer
	4.4 Security Discussion
	4.5 Challenges of Integrating with Ethereum

	5 Evaluation
	5.1 Experimental Setup
	5.2 Convergence Evaluation
	5.3 Convergence in the Presence of Churn
	5.4 Gossip Frequencies
	5.5 Gossip Lengths
	5.6 Overlay Construction
	5.7 Attestation Dissemination
	5.8 Overall Message Improvement
	5.9 Dissemination Speed

	6 Related Work
	7 Conclusions
	References

