
Noname manuscript No.
(will be inserted by the editor)

Pulp: an Adaptive Gossip-Based Dissemination Protocol
for Multi-Source Message Streams

Pascal Felber · Anne-Marie Kermarrec · Lorenzo Leonini ·
Etienne Rivière · Spyros Voulgaris

the date of receipt and acceptance should be inserted later

Abstract Gossip-based protocols provide a simple, scal-

able, and robust way to disseminate messages in large-

scale systems. In such protocols, messages are spread in

an epidemic manner. Gossiping may take place between

nodes using push, pull, or a combination. Push-based

systems achieve reasonable latency and high resilience

to failures but may impose an unnecessarily large re-

dundancy and overhead on the system. At the other

extreme, pull-based protocols impose a lower overhead

on the network at the price of increased latencies. A few

hybrid approaches have been proposed—typically push-

ing control messages and pulling data—to avoid the

redundancy of high-volume content and single-source

streams. Yet, to the best of our knowledge, no other

system intermingles push and pull in a multiple-senders

scenario, in such a way that data messages of one help

in carrying control messages of the other and in adap-

tively adjusting its rate of operation, further reducing

overall cost and improving both on delays and robust-

ness.

In this paper, we propose an efficient generic push-

pull dissemination protocol, Pulp, which combines the

best of both worlds. Pulp exploits the efficiency of

push approaches, while limiting redundant messages

Pascal Felber · Lorenzo Leonini · Etienne Rivière
Université de Neuchâtel, Institut d’Informatique, Émile-Argand

11, 2009 Neuchâtel, Switzerland.
Tel.: +41 32 718 2725, Fax: 41 32 718 2701.

E-mail: {pascal.felber,lorenzo.leonini,etienne.riviere}@unine.ch

Anne-Marie Kermarrec

INRIA Rennes-Bretagne Atlantique, Campus Universitaire de
Beaulieu, 35042 Rennes cedex, France.

E-mail: anne-marie.kermarrec@inria.fr

Spyros Voulgaris

Vrije Universiteit, Computer Science Department, Amsterdam,
The Netherlands. E-mail: spyros@cs.vu.nl

and therefore imposing a low overhead, as pull protocols

do. Pulp leverages the dissemination of multiple mes-

sages from diverse sources: by exploiting the push phase

of messages to transmit information about other dis-

seminations, Pulp enables an efficient pulling of other

messages, which themselves help in turn with the dis-

semination of pending messages. We deployed Pulp on

a cluster and on PlanetLab. Our results demonstrate

that Pulp achieves an appealing trade-off between cov-

erage, message redundancy, and propagation delay.

Keywords Peer-to-peer network, Gossip-based

dissemination, Epidemic algorithm

1 Introduction

Disseminating information from and to very large com-

munities of nodes is fundamental in many systems and

for a wide spectrum of applications, such as spread-

ing antivirus updates, propagating control messages or

monitoring information (particularly when arriving in

bursts), operating a content delivery network, etc.

Solutions based on dedicated resources, be they indi-

vidual servers, server farms, or distributed architectures

of dedicated forwarders, share the common issue of cost

effectiveness, as they are extremely difficult to provi-

sion accurately. More specifically, the almost inevitable

over-provisioning of resources raises cost dramatically.

Any amount of dedicated resources has a finite limit

on the load it can handle. A system claiming high scal-

ability should provision resources for the highest pos-

sible anticipated load, even if that peak load appears

very rarely, if at all. This results in a significantly un-

derutilized system during regular operation, leading to

massive waste of resources and money.

2

Collaborative architectures embracing peer-to-peer

(P2P) models form the natural alternative to systems

based on dedicated resources. Nodes making use of a

service also contribute to it, relieving the total system

of part of the work in a proposition comparable to the

load they impose on it. This property is often referred to

as elasticity, in the sense that system resources rapidly

scale up and down along with the demand.

In this context, epidemic (or gossip) protocols have

recently received an increasing interest. Their attrac-

tiveness stems from their scalability, inherent balanc-

ing of load across all nodes, and quick convergence.

Additionally, they have proven to be remarkably ro-

bust in the face of failures. Last but not least, they

are extremely simple. They rely on a periodic pairwise

exchange of information between peers, and are partic-

ularly suited to implement a global emergent behavior

as a result of local interactions based on limited knowl-

edge. They have been applied to a wide variety of ap-

plications [8,13,15,17,32]. Yet, the most classical use of

gossip protocols is to reliably disseminate data in large

networks in a collaborative manner [3,9,16].

Gossip-based dissemination transmits information

in the same way as a rumor spreads within a large group

of people in real life, or a disease spreads by infecting

members of a population, which can in turn infect oth-

ers. Randomness and repetitive probabilistic exchanges

are at the heart of gossip-based protocols and are keys

to achieve robustness. Messages are relayed in an epi-

demic manner so that, with high probability, they are

received by all peers in the system.

More recently, gossip-based approaches have been

extensively used in the context of streaming applica-

tions [19,21,34]. Some recent work [4] has demonstrated

that epidemic live streaming algorithms can achieve

nearly unbeatable rates and delays. This growing inter-

est in gossip-based dissemination can be explained by

the more than ever dynamic nature of large-scale sys-

tems with frequent failures and unreliable communica-

tion links, emphasizing the fragile nature of tree-based

approaches. These systems consider the transmission of

a stream of messages from one source to a large num-

ber of consumers, typically for in-order replay. However,

besides the now well-understood single-source stream-

ing problem and associated protocols, there is also a

need from applications for the support of all-to-all data

transmission where messages are emitted by potentially

all nodes in the system and shall be received by all oth-

ers. In this context, message emissions are generally not

correlated, thus a weak or no ordering is typically suffi-

cient. Examples of such applications include wide-area

monitoring, logging and update mechanisms and no-

tification services. These applications are the ones we

are targeting in this paper. They share the following

common characteristics. Messages are sent by multiple

sources (i.e., any peer in the system can be the source of

a new message or set of messages). Messages are typi-

cally of moderate size and do not need to be sent in

several pieces (or chunks), which would typically be

achieved in a single-source dissemination using proto-

cols such as BitTorrent [7]. While messages from dif-

ferent sources are not necessarily correlated, the overall

rate at which messages are sent in the whole group is

typically varying in time: burst of messages can be sent

to all peers in the system at some point in time while

in the common case only a few messages are dissemi-

nated per unit of time, or messages can be triggered at

multiple sources in response to the reception of a pre-

vious message. Finally, the targeted infrastructure is a

non-reliable one, where messages can be lost and nodes

can join or leave the system at any moment. A dis-

semination service must take this aspect into account

but at the same time achieve reliable and efficient dis-

semination at the lowest possible cost on the network

(by minimizing the number of messages and the overall

bandwidth used for the dissemination and its manage-

ment).

There are two main methods for epidemic dissemi-

nation of messages, as laid out in the seminal paper on

epidemics by Demers et al. [8]. The first one (referred to

as rumor mongering in [8]) is a reactive method. Upon

reception of a new message, a node actively pushes it

forward to a few other nodes in the network, which,

in turn, do the same until some termination condition

is met. The second method (referred to as anti-entropy

in [8]) is proactive. Each node periodically probes a ran-

dom other node to check for messages it has not received

yet, and pulls them if there are any. For convenience,

in this paper we will be referring to these methods as

push and pull, respectively.

1.1 Evaluation Metrics and Objectives

In order to evaluate the strengths and weaknesses of

gossip-based dissemination protocols, we consider a set

of metrics traditionally used to assess the performance

of dissemination protocols, namely delay, coverage, and

redundancy.

– Delay refers to the time intervening between the

generation of a message and its delivery at some

destination.

– Coverage refers to the ratio of peers that receive a

message. We are targeting coverage ratios of 100%,

i.e., each message should be delivered to all peers.

3

– Redundancy refers to the number of duplicate—

and therefore unnecessary—message deliveries. Al-

though it improves resilience to failures, too high a

redundancy may overload the network.

Another important metric is that of the overall cost

of the dissemination mechanism, in terms of the number

of messages (for the dissemination itself, maintenance of

the dissemination substrate, and control flow messages)

and used bandwidth (typically dominated by redundant

sends of messages). Ideally, messages originating at any

peer should be delivered to all peers in the system (com-

plete coverage) with reasonable delays. In our context,

this should be achieved in a robust manner and with

the lowest possible cost, meaning achieving a minimal

redundancy and using as few messages as possible for

the protocol operation.

1.2 Contributions

We start by pointing out the shortcomings of the push

and the pull methods, and illustrate them by experi-

mental results. Our contributions are then the follow-

ing. We present the specificities related to the dissem-

ination of a flow of messages and how forwarding at

random directions can be leveraged to achieve com-

plete disseminations at low cost and with low delay.

Next, we present a new protocol based on our observa-

tions, Pulp, that mingles push and pull in such a way

that each one makes up for the weaknesses of the other.

Pulp is a highly scalable and adaptable collaborative

protocol for the dissemination of multiple messages in

very large sets of peers. The performance, costs, and

resilience of Pulp are conveyed by real deployments

under static and dynamic scenarios on a cluster and on

the PlanetLab testbed [1].

1.3 Outline

The rest of the paper is organized as follows: In Sec-

tion 2, we discuss the strengths and weaknesses of the

push and pull approaches. The design of the Pulp pro-

tocol is presented in Section 3. In Section 4, we perform

a thorough experimental evaluation of Pulp. Section 5

discusses related work. Finally, Section 6 concludes.

2 The Push-Pull Dilemma

As already mentioned, epidemic-based dissemination pro-

tocols are based on two basic methods: push and pull. In

this section, we identify the strengths and weaknesses

of each approach in an attempt to come up with an

efficient hybrid scheme that combines the best of both

worlds.

2.1 Push protocols

Push protocols are based on the recursive forwarding of

messages among peers. A node receiving a message ac-

tively passes it on to a few random other nodes, which

recursively do the same until some termination condi-

tion is met. The termination condition ensures that the

recursion does not go on forever. For instance, mes-

sages could be augmented by a Time-to-Live (TTL)

field to limit the number of hops they can take. Alterna-

tively, nodes could be programmed to forward messages

only upon their first reception and ignore subsequent

copies. Either solution ensures that the dissemination

of a message eventually fades out. The number of times

an informed node forwards a message is denoted as the

Fanout.

Regardless of the specific variation of the push pro-

tocol, reaching all nodes by blindly forwarding a mes-

sage in random directions is a very expensive operation.

Assume a rather ideal and generic model for push dis-

semination (we explain later why reality is harsher),

where nodes are selected uniformly at random and one

at a time, out of a total population of n nodes. At each

iteration, the message is forwarded to the selected node,

independently of whether it is already informed.

The probability to select a not-yet-informed node

when k nodes have already been informed is n−k
n , which

requires an expected number of n
n−k random forwards

to reach the (k+ 1)-th node. This number lies between

one and two until half of the nodes have been informed,

but increases dramatically for the last few nodes. For in-

stance, reaching the last node alone requires on average

n forwards. The expected number of times a message

should be forwarded to reach the whole population of

n nodes is

n−1∑
k=0

n

n− k
= n ·

n∑
i=1

1

i
≈ n lnn+ γn

for high values of n, where γ ≈ 0.5772. That is, the

expected total number of forwards to reach all nodes is

in the order of O(n lnn).1

Reality, however, is harsher. First, forwarding a mes-

sage n lnn times does not ensure that it will reach all

1 These probabilities are studied in the equivalent Coupons

Collector problem, where a collector keeps selecting at random

out of n different coupons with replacement, and the number of
trials until all coupons have been selected at least once is mea-

sured.

4

 0
 20
 40
 60
 80

 100

 0 1 2 3 4 5 6 7 8 9 10
 0
 5000
 10000
 15000
 20000
 25000

Push-based, FANOUT = 2

Useful Useless Notified

 0
 20
 40
 60
 80

 100

 0 1 2 3 4 5 6 7 8 9 10
 0
 5000
 10000
 15000
 20000
 25000

N
ot

ifi
ed

 n
od

es
 (

pe
rc

en
ta

ge
)

M
es

sa
ge

s
(u

se
fu

l/u
se

le
ss

)

Push-based, FANOUT = 4

98.09%

 0
 20
 40
 60
 80

 100

 0 2 4 6 8 10 12 14 16 18 20
 0
 5000
 10000
 15000
 20000
 25000

Cycles

Pull-based

100%

Fig. 1 Discrete time simulation of redundant (“useless”) mes-

sage delivery ratios and coverage for push-based and pull-based

epidemic diffusions in a 10,000 node network. TTL is ∞ for the
push-based simulation.

nodes. Second, as dissemination is carried out in a to-

tally decentralized, asynchronous, and massively paral-

lel way, it is not possible to impose fine-grained control

on the number of times a message is forwarded. As a

result of these, the indicated value n lnn often ends

up being significantly surpassed, resulting in significant

additional redundancy.

2.2 Pull protocols

In a pull protocol, each node periodically probes ran-

dom peers in the network in hope to reach an already

informed peer, and retrieves new messages when avail-

able. Typically, during a pull round, random pairs of

peers exchange information about the messages they

have recently received and request missing messages

from each other.

Contrary to push protocols, the probability of an

uninformed node receiving a message increases linearly

with the current coverage of the message. Indeed, if k

out of n nodes are informed, then a non-informed node

will probe an informed one with probability k
n−1 . In

the case of the last uninformed node, it will pull the

message with probability 1 the next time it probes a

random node, as all other nodes already have it.

2.3 Coverage versus redundancy

In order to experimentally validate the aforementioned

properties, we consider the following push protocol. Each

message is augmented by a TTL value, determining the

 0
 5

 10
 15

 20

 0 5 10 15 20
 0

 20
 40
 60
 80

 100

Coverage

FANOUTTTL 0
 5

 10
 15

 20

 0 5 10 15 20
 0

 20
 40
 60
 80

 100

Complete disseminations

FANOUTTTL

 0
 5

 10
 15

 20

 0 5 10 15 20
 0
 5

 10
 15
 20
 25

Avg. redundant pushes received, per peer

FANOUT
TTL

Fig. 2 Push-only: Coverage, number of complete disseminations

and average number of redundant (useless) messages received per

peer, as a function of the TTL and Fanout.

number of hops it can traverse. A node receiving a mes-

sage for the first time decreases its TTL by one, and if it

is not lower than zero forwards the message to Fanout

random other nodes. When a node receives a message

that it has already received (and possibly forwarded) in

the past, it simply ignores it.

Figure 1 presents a simulated overview of the be-

havior of push- and pull-only protocols, with respect

to coverage and redundancy. For the sake of simplicity,

both protocols are presented in a synchronous way: all

peers that pull from, or push to, another node do so at

the same time. This synchronous activity is called a cy-
cle. We consider Fanout values of 2 (top) and 4 (mid-

dle), with infinite TTL in push protocols. A random

node sends a message at cycle 0.

We observe that in push protocols the data spreads

exponentially fast through the network, especially in

the first rounds. However, as rounds advance, the rate

of the dissemination diminishes and the cost of reaching

additional nodes increases drastically (as shown by the

number of redundant messages, i.e., messages pushed to

already informed nodes). A higher Fanout produces a

sharper exponential growth of the set of reached nodes,

but also a higher level of redundancy. One can notice

that messages are not pushed to all nodes.

Regarding pull protocols, Figure 1 (bottom) shows

that it takes several rounds until the dissemination of

a message starts taking off, but once it has reached a

sufficient number of nodes it quickly spreads to all the

remaining ones. One can also observe that a constant

number of control messages are sent during each round,

5

with the ratio of useful messages growing only during

the peak of the message spread.

Figure 2 sheds more light on the behavior of push

protocols, with each dot representing a separate run of

a push-only dissemination for a certain combination of

TTL and Fanout values. Even if a coverage of close to

(but less than) 100% can be achieved with a relatively

low TTL and Fanout, as illustrated in Figure 2 (top

left), the probability of a message reaching all nodes is

practically zero, unless both parameters have substan-

tially higher values (top right). Unfortunately, the val-

ues for TTL and Fanout that provide good coverage

properties produce high redundancy, expressed as the

number of deliveries per message per node (bottom).

2.4 Delay

Push protocols deliver messages with a relatively low

delay, as they can immediately push messages further

upon reception at each step of the dissemination, in

an avalanche-like manner. Latency is therefore directly

proportional to the network delays and the number of

hops from the source. In contrast, pull protocols can

exhibit high latency because, even if the propagation

time of messages does also depend on the number of

hops from the source, it is multiplied by the pull pe-

riod. A high frequency will produce much (unnecessary)

traffic while a low frequency will dramatically increase

latency.

2.5 Discussion

While both push and pull protocols may achieve full

coverage, they do so through complementary patterns.

Push quickly spreads messages to a large portion of

the network, as it does not depend on timing assump-

tions (e.g., no periodic operation). It is, however, slow

and prohibitively expensive in reaching the last few

nodes. This renders it an excellent candidate for the

early stages of dissemination, but inappropriate for the

final phase.

Pull, on the contrary, is an excellent candidate for

the final stages of dissemination, as it deterministically

delivers each message to all remaining nodes in log-

arithmic steps, and by pulling messages selectively it

eliminates the problem of redundant message forward-

ing. However, it is a poor choice for the early stages,

as it starts very slowly. The main disadvantage of pull,

though, is that probing requests are periodic, generat-

ing a non-negligible steady state load proportional to

the probing frequency. However, lowering the probing

frequency to save on traffic overhead increases the dis-

semination delay, leading to delicate tradeoffs.

These complementary patterns of push and pull are

the driving force behind the Pulp protocol, described

in the following section.

3 The Pulp Protocol

From the observations presented above, it appears clear-

ly that there is no ideal protocol performing well on all

fronts. In this section we present Pulp, a hybrid proto-

col harnessing the specific strengths of both approaches.

3.1 System Model

We consider a large set of n nodes communicating over

an unreliable, fully connected medium (e.g., UDP over

the Internet). Nodes can join or leave the network at

any time. Departures and crash failures are treated

equivalently, that is, there is no graceful leave oper-

ation. Byzantine behavior is out of the scope of this

paper (see, for instance, BAR Gossip [21] for a dissem-

ination protocol dealing with byzantine nodes).

All operations are fully decentralized. That is, there

is no central entity to control any function of the sys-

tem. All message exchanges (both periodic and spo-

radic) between nodes are asynchronous. Note that the

dynamic and unreliable nature of the network rules out

protocols that depend on rigid structures or reliable

communication channels, such as tree-based dissemina-

tion protocols using TCP communication.

Regarding the anticipated workload, we consider (1)
a sequence of messages being disseminated rather than

a single message, (2) generated at variable arbitrary

rates, and (3) originating at multiple nodes. As we will

see, point (1) is particularly important as message dis-

seminations are leveraged to inform nodes of previous

messages that might have been missed, which in turn

helps nodes adjust their pulling frequency. The result-

ing protocol is adaptive and self-controlled based on the

current message generation rate. Note that the model

of a sequence of messages matches the nature of many

common applications, such as microblogging, RSS feeds,

etc.

3.2 Supporting Mechanisms

Like many epidemic protocols, Pulp relies on commu-

nication between peers selected uniformly at random.

To that end, we rely on the family of Peer Sampling

Service protocols [13], and specifically Cyclon [33],

6

which provides each node with a regularly refreshed list

of links to random other peers, in a fully decentralized

manner and at negligible bandwidth cost.

To provide a high level sketch of Cyclon we omit

certain details found in [33]. In a Cyclon overlay, each

node maintains a (very short) partial view of the net-

work, that is, a handful of links (IP addresses and ports)

to other nodes. Periodically, yet asynchronously, each

node contacts a peer from its view, and they exchange

a few of their views’ links. As a result, views are peri-

odically refreshed with new links to random other peers

of the overlay. When the right policies are followed (see

[13] and [33] for details), this method has shown to pro-

duce overlays that strongly resemble random graphs,

that is, at any given moment each node’s view con-

tains links to nodes selected uniformly at random from

the whole network. Moreover, this process has shown

to converge in a few dozen cycles irrespectively of the

initial topology, and due to the self-healing nature of

Cyclon the respective properties are retained even in

the face of node churn2. Cyclon and most other Peer

Sampling Service protocols have negligible computa-

tional, memory, and bandwidth cost,3 and have shown

to operate with remarkable reliability and robustness

in (even highly) dynamic conditions.

To elaborate on the feasibility of nodes to commu-

nicate with randomly selected peers, when a node is

equipped (through Cyclon) with a few links to ran-

domly selected other nodes, and it randomly selects one

among them, it is equivalent to having selected one

node at random from the whole overlay. Further, when

the node’s Cyclon view is changing over time, the

node has essentially access to an endless stream of ran-

dom peers to communicate with.

Note that peer sampling protocols are also able to

cope with the characteristics of actual IP networks, in

particular with respect to nodes’ reachability (as the

node lies behind a firewall or NAT). The authors of [?]

propose an augmentation of the Cyclon protocol that

also deals with NAT-traversal issues while maintaining

the same randomness characteristics for the overlay.

Finally, nodes in Pulp need to have a rough esti-

mate of the network size. For that, we employ the inter-

val density algorithm [18], which can be executed locally

on top of Cyclon with negligible cost. The principle

of this algorithm is based on the fact that the Cyclon

view provides a continuous stream of randomly selected

peers from the entire network. Estimation of the net-

2 In our experiments Cyclon converged in no more than 20

“cyclon rounds”, that is 100 sec, and remained converged there-
after even at experiments involving churn.

3 In our experiments Cyclon traffic accounted for an average

of 24 bytes/sec per node, as explained in Section 4.1.

work size relies on the density of these peers over a

chosen value space, and proceeds as follows. Each node

applies a hashing function to the IP addresses of each

peer it discovers through Cyclon, mapping them to

values uniformly spread in a given value space. It keeps

a set of recent peers’ hashed values that are the clos-

est to a particular value (e.g., its own hash value), and

uses the span of this set over the whole value space to

infer an indication of the network size. More than one

hashing function can be used for increased accuracy.

3.3 Pulp: The Intuition

As explained extensively in Section 2, push-based and

pull-based protocols operate with opposite patterns. Con-

veniently enough, these patterns are complementary

with each other regarding their strengths and weak-

nesses.

Given the respective observations, Pulp strives to

meet the following objectives:

Limit push. Let push execute only for the very few

initial steps, to avoid redundant message forwarding

while ensuring sufficient startup diffusion of messages.

Our experiments (Section 4) indicate that reaching 4%

to 5% of the network is a good target for the push phase,

with nearly no redundancy.

Reduce redundant pulls. Avoid probing to find out

whether a message is missing. Probe only in an attempt

to pull the message, when it is known to be missing.

Adapt the pull period. Periodic probing constitutes

a limitation. Too short a period causes unnecessary

probing message load, particularly in periods of low

message rate. Too high a period renders the system un-

responsive when messages come at high rate. Pulp is

designed to dynamically adjust the probing frequency

of nodes to match the current message rate.

The key observation is that if messages are forwarded

to nodes selected uniformly at random, every message

reaches a different set of nodes that is not correlated to

the sets of nodes reached by other messages. Although

a node might miss a given message with significantly

high probability, the probability of it missing all of k

messages, diminishes exponentially with k. We exploit

this property in our algorithm.

With respect to the first objective, reaching 4% to

5% of the network in the initial push phase requires to

7

set the values of TTL and Fanout accordingly.4 The

coverage obtained depends on both of these parameters,

as well as the size of the network, which is estimated by

the interval density algorithm (see Section 3.2). A node

with a size estimation Nest simply chooses, for messages

it generates, the values of TTL and Fanout such that

cest = Nest/

TTL∑
i=1

Fanouti

is as close as possible to the expected coverage. Either

TTL or Fanout is fixed (possibly based on allowed

range of values or on the Cyclon view size for the

Fanout) and the other parameter is derived accord-

ingly. Our current implementation fixes the Fanout to

3 and computes the value of TTL. Initial push messages

can be sent with different TTL values to approach more

closely the required coverage. Note that duplicates can

be ignored in the calculation, as the value of the ex-

pected coverage is indeed required to be low enough to

actually avoid most duplicates.

Regarding the second and third objectives, Pulp

leverages the push phase to relieve the pull phase of

excessive probing requests. Instead of having each in-

dividual node explicitly probe random other nodes at

fixed intervals to discover whether it is missing any

messages, forwarded messages carry information about

which other messages are available, conveying this in-

formation as a by-product of the push component.

3.4 Pulp: The Protocol

We now present a detailed description of the Pulp al-
gorithm, which combines the push and pull components

for disseminating a sequence of messages in a collabo-

rative and decentralized fashion.

Algorithm 1 shows the pseudo-code of the Pulp pro-

tocol. Each peer P maintains a history of the messages

it has recently received, denoted as HP . It additionally

maintains a trading window, denoted as TP , containing

the list of messages that are available to other nodes on

request.

When a message is pushed to (or generated at) node

P for the first time, P registers it in HP and, if the

TTL has not been reached yet, forwards it to Fanout

random other peers. We stress that obtaining the IP ad-

dress of randomly selected peers is a trivial task thanks

to Cyclon, as described in Section 3.2.

4 We chose this value of 4% to 5% as they allow for a low la-

tency dissemination with only very few duplicates. Using larger

values do not reduce the delays further but significantly increase
duplicate counts. This choice is experimentally justified in Sec-

tion 4.2.

Algorithm 1: Pulp algorithm on node P
Variables

HP : History of (recently) received message IDs
∆pull: Period of pull operations (initially 30s)
missing: Set of message IDs known, but not yet received
prevMissingSize: Size of missing at the end of last
∆adjust period
prevuseful: Number of useful pull replies during current
∆adjust period
prevuseless: Number of useless pull replies during current
∆adjust period

(∆adjust, TTL and Fanout are fixed protocol parameters)

// Invoked when a message is pushed to node P by node Q
function Push(msg, hops, Q, TQ)

// Forward further if needed
if msg received for the first time then

add msg to HP
if hops > 0 then

invoke Push(msg, hops-1, P, TP) on Fanout
random peers

// Messages will be pulled at the next pulling period
missing ← missing ∪ {m ∈ TQ : m /∈ HP } \ {msg}

// Periodic pulling of missing elements
thread PeriodicPull()

do every ∆pull seconds
// Shuffling reduces the probability of receiving

duplicates by pull
shuffle missing
invoke Pull(missing, P, TP) on a random node Q

// Invoked when a node Q requests a message from node P
function Pull(requested, Q, TQ)

m← 1st element in requested order ∈ TP , or ⊥ if none
invoke PullReply(m, P, TP) on Q

// Receive a reply to a pull request from node P
function PullReply(msg, Q, TQ)

if msg =⊥ ∨ m ∈ HP then
prevuseless ← prevuseless + 1

else
add msg to HP
missing ← missing ∪ {m ∈ TQ : m /∈ HP } \ {msg}
prevuseful ← prevuseful + 1

// Periodic adjustment of pulling period for node P
thread AdaptFreq()

do every ∆adjust seconds
if |missing| > prevMissingSize then

∆pull ←
∆adjust

|missing|−prevMissingSize+prevuseful

else
if |missing| > 0 ∧ prevuseless ≤ prevuseful then

∆pull ← ∆pull × 0.9
else

∆pull ← ∆pull × 1.1

∆pull ← max(∆pull, ∆pullmin
)

∆pull ← min(∆pull, ∆pullmax
)

prevuseless ← 0
prevuseful ← 0
prevMissingSize← |missing|

In forwarding a message to another peer Q, node P

also forwards the IDs of messages in its trading window

TP . These are messages that P considers to be in the

pull phase, a subset of messages in P ’s history HP .

The trading window plays a key role in the interaction

between nodes, because it helps nodes avoid exchanging

messages that are either (1) too recent and are still

being pushed, or (2) too old and have already been

8

C5 A5 A6 C7 C8 B5 A9 C4B3 A7 C3 B1 C6 B2old messages

t
Hp: recent history Tp: trading window

Fig. 3 Data structures of the Pulp algorithm. Note that mes-

sages come from multiple sources (here A, B, and C) and each
node sorts them based on the order it received them (which is

generally different for each node).

removed from local histories. The trading window TP
essentially leaves a “safety margin” on both sides of

history HP . Figure 3 illustrates these data structures.

When Q receives TP , it checks for messages not con-

tained in its own history HQ. If it discovers some mes-

sages it has missed, it inserts them in the missing set.

These messages will be asked for by the periodical pull

thread.

The periodic pull thread simply selects a random

peer and sends it a pull request. The protocol does

not try to pull from peers that are known to have the

requested messages, neither does it keep information

on which peer advertises what content. The rationale

behind this design choice is that, while pulling from

specific peers might slightly speed up dissemination of

the first few messages, random selection has the advan-

tage of distributing information about message avail-

ability more evenly (advertisements are sent along with

pull requests), overall making the protocol more respon-

sive and globally more efficient. It is a design decision

that favors common benefit over (short term) individual

gain.

As multiple pull operations of the same node may

overlap in time, it makes sense to avoid requesting the

same message from two different peers. Therefore, the

set missing is rotated by one position (round-robin)

before being sent next time. The inquired node selects,

among the messages in its history, the first available

one according to the ranking in the received missing

list, if such an element exists. If none of the messages

in missing is available, it replies with ⊥, and the pull

operation counts as useless. Note that, as for pushed

messages, a node replying to a pull request also piggy-

backs its trading window in the answer.

The periodic adaptation of the pulling frequency is

performed by a separate thread in the following way.

Each node has a pulling frequency ∆pull, and main-

tains a set of message identifiers, missing, that it has

heard of but not received yet. Pulling frequencies are

chosen to follow the overall rate of new messages sent

in the network. Every ∆adjust seconds, a node inspects

(1) the evolution of the size of the missing set during

the last period, and (2) the number of useful and use-

less pulls that were performed during that period. If the

size of the missing set has increased, ∆pull is lowered to

the period that would have been necessary to retrieve

all newly known elements (assuming successful pull op-

erations). That is, the new pulling frequency ∆pull is

simply the adjustment frequency ∆adjust divided by the

number of messages that should have been fetched dur-

ing the last adjustment period to cope with a steady

rate of reception (which would result in a steady size of

the missing set).

This adaptation allows us to cope with increasing

rates of new messages and to limit the growth of the

missing set. If the size of missing has shrunk, the evo-

lution depends on the ratio of useless vs. useful pull

operations: if useless pulls dominate, ∆pull is decreased

by a small factor. If useful pulls dominate, ∆pull is in-

creased by the same factor. We observed based on pre-

liminary evaluations that a value of 10% was yielding a

good compromise between the reactivity and the accu-

racy of the pulling frequency adaptation mechanism. In

other words, the pulling frequency aggressively adapts

to sudden sending activity and adjusts to the highest

possible value with acceptable useless pulling rate.∆pull

can be bounded by [∆pullmin, ∆pullmax], depending on

the underlying network properties and the desired re-

activity of the system to new message sending activity.

4 Evaluation

This section describes experimental results from real

deployments of Pulp on PlanetLab [1], as well as a

controlled deployment in a cluster. We first present our

experimental setup and evaluation metrics. Then, we

present experimental results demonstrating the perfor-

mance, stability, and load in both static and dynamic

environments. Finally, we compare Pulp to a push-only

and a pull-only protocol to highlight the benefit of its

hybrid approach.

4.1 Experimental Setup

Our implementation uses UDP for communication. UDP,

being a connectionless protocol, seems the most appro-

priate choice given the many short communication ses-

sions between arbitrary nodes, rather than long ses-

sions between fixed pairs. In addition, given the inher-

ent fault tolerance of Pulp, there is no reason to opt for

a more reliable (and expensive) protocol such as TCP.

The ability of gossip-based dissemination to gracefully

deal with packet loss is demonstrated in our experi-

ments.

9

In all experiments, messages are 8KB in size and are

sent from randomly chosen nodes of the network. Un-

less specified otherwise, the initial push phase is con-

figured to reach between 4% and 5% of the network

when there is no message loss (thus slightly less in prac-

tice). To that end, we set the parameters as follows:

TTL=3 and Fanout=3 in a 1,000 node network (ide-

ally reaching 40 nodes—coverage 4%) and TTL=3 and

Fanout=2 in a 300 node network (ideally reaching 15

nodes—coverage 5%). We further justify this choice of

a very low coverage of the initial push phase with our

second experiment. Unless otherwise noted, the mini-

mal and maximal pull periods are set to ∆pullmin = 0.2

seconds and ∆pullmax = 30 seconds.

No node has global knowledge of the network, and

the selection of random peers for Pulp operations is

based exclusively on Cyclon [33], as explained in Sec-

tion 3.2. Cyclon performs periodic pairwise shuffles of

peers’ views to maintain a constantly evolving overlay

network whose properties are close to those of a ran-

dom graph (i.e., each node’s link is equally likely to

be present in any other node’s view). Views were con-

figured to a size of 25 links to other nodes, and peers

exchanged 5 links every 5 seconds. Given that a link

is 6 bytes long (IP address and port), this accounts to

60 bytes of traffic (inbound and outbound) induced by

each node every 5 seconds. Since this traffic affects two

nodes, each node is involved on average in 120 bytes per

5 seconds, that is 24 bytes per second of total traffic for

each node. Also, it should be noted that thanks to Cy-

clon’s link aging policies, which are out of the scope

of this paper, links to failed nodes can remain in other

peers’ views no more than 5 exchange rounds, that is,

25 seconds in our experimental settings.

We evaluate Pulp along the metrics laid out in

the introduction, namely coverage, dissemination de-

lays, and redundancy (both in terms of redundant pushes

and useless pulls). We evaluate (1) delays and their dis-

tribution, (2) the influence of the initial push phase,

(3) the influence of high levels of churn on update recep-

tion delays and (4) the effectiveness of the self-adapta-

tion of pulling periods for varying message generation

rates.

4.2 Homogeneous Settings and Churn Resilience

Our first set of experiments was conducted on a lo-

cal cluster composed of 11 dual-core nodes with 2 GB

of memory each. Each machine hosts 91 instances of

PULP, reaching a total of 1,001 nodes.

Our first experiment (Figure 4) presents the deliv-

ery delays for a stream of 200 messages. Messages are

sent by randomly chosen peers at a rate of one every

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 0 100 200 300 400 500

P
ul

l r
ep

lie
s

(/
pe

er
, /

se
c.

)

Time (sec.)

Useful Useless

 0
 20
 40
 60
 80

 100

 0 100 200 300 400 500

D
el

ay
s

(s
ec

on
ds

)

Max
90th perc.

75th perc.
50th perc.

25th perc.
5th perc.

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500

N

um
be

r
of

 r
ec

ep
tio

ns

Fig. 4 Performance of the dissemination of 200 messages on a
network of 1,001 nodes running on a cluster: individual cumula-

tive delays, evaluation of the delay distribution, and evolution of

the pull operations recall.

2 seconds approximately.5 The upper plot presents the

number of nodes informed (through either push or pull)

for each message with respect to time. Each single line

corresponds to the evolution of a certain message. The

middle plot presents the distribution of delays for each

message. The abscissa corresponds to the time when

the message is sent. For a given abscissa, the cumula-

tive shaded areas represent the distribution of delays,

by percentiles. For instance, the maximum delay for re-

ceiving the message sent at time 200 is 31 seconds, and

half of the peers receive it within 14 seconds (50th per-

centile). One vertical set of percentiles (distribution) in

the middle plot is a concise representation of the cumu-

lative distribution of reception times for this message,

shown by one individual line in the upper plot. Finally,

the lower plot presents, for each period of one second,

the mean number of useful and useless pull operations

performed, per peer. This metric is used by nodes to

self-tune the pulling algorithm, with the objective to

reach a larger number of useful than useless pull oper-

ations.

We clearly see in Figure 4 (top) the initial push

phase that reaches a small portion of the network (4%):

the small vertical lines at the beginning of each diffu-

5 Due to the high load on our cluster, periods are not exactly
respected by the machine’s scheduler. This explains that the last

message is sent at around 408 seconds and not 400 as expected.

10

 0
 1
 2
 3
 4

0.57 (2)

1.97 (4)

4.11 (6)

6.94 (8)

10,4 (10)

14.4 (12)

18.8 (14)

23.5 (16)

P
us

h
du

pl
ic

at
es

 (
%

)

Push coverage (%) (Fanout)

 0

 100

 200

 300

D

el
ay

s
(s

ec
on

ds
)

Max
90th perc.

75th perc.
50th perc.

25th perc.
5th perc.

Fig. 5 Evolution of the reception latency distribution w.r.t. the

coverage of the initial push phase.

sion, that is shown for all messages. The larger part of

the dissemination takes place by pull operations. We

observe an initial bootstrap phase, where mostly only

push operations reach nodes, and no pulls take place.

This is due to the fact that, prior to the dissemina-

tion of the first message, all nodes have pulling periods

of ∆pullmax =30 seconds in this experiment. As soon

as enough nodes have been reached by initial pushes,

there is a warm up phase with an increasing rate of pe-

riodic pull operations: nodes start to discover missed

messages and to retrieve them. This is also demon-

strated by Figure 4 (bottom): after the warm up phase,

nodes start issuing pull operations, most of which are

useful (pulling too early, on the opposite, would have

resulted in a larger set of useless communications). As

a small number of useless pull operations appear, the

pull period gracefully adapts to the message emission

frequency and only a very small fraction of pull oper-

ations are useless. As a result, the delivery delays for

messages sent after the warm up phase remain stable.

The next experiment explores the impact of the ini-

tial push phase on the overall delivery latency: does a

larger coverage during the push phase result in lower

delays? Figure 5 (top) presents the distribution of de-

lays for a set of 200 messages in the same settings as for

the previous experiment. We vary the coverage by set-

ting TTL=2 and by varying Fanout from 2 to 16. The

lower part of the figure presents the evolution of the pro-

portion of duplicate messages as a function of the cover-

age of the initial push. For instance, we have a coverage

of 14.4% of the nodes on average with Fanout=12 and

this results in 1.11% of the nodes receiving at least one

duplicate.

We observe the typical exponential growth of dupli-

cates with respect to the coverage of the push phase:

the higher the Fanout, the more peers are reached,

but redundancy grows faster than coverage. Most im-

portantly, the delays that are observed with increas-

 0

 20

 40

 60

 0 50 100 150 200 250 300 350 400

Max.
90th perc.

75th perc.
50th perc.

25th perc.
5th perc.

 0

 20

 40

 60

 0 50 100 150 200 250 300 350 400

 0

 20

 40

 60

 0 50 100 150 200 250 300 350 400

 0

 20

 40

 60

 0 50 100 150 200 250 300 350 400
U

pd
at

e
T

im
e

D
is

tr
ib

ut
io

ns
 (

se
co

nd
s)

C
hu

rn
 x

20

C
hu

rn
 x

10

 C

hu
rn

 x
5

N
o

C
hu

rn
Time (seconds)

Fig. 6 Evolution of the delays as seen by a set of 100 observers
(static nodes) under increasing churn rates.

ing coverage are decreasing only at very low values of

Fanout, and the price in redundant push operations

overwhelms the benefits of higher values. This justifies

the value of approximately 4% chosen as target cover-

age for our experiments.

4.3 Performance under Churn

The next experiment studies the resilience of the Pulp

protocol to churn (Figure 6). To that end, we use a

churn manager that can emulate node departures and

arrivals in real time, by remotely starting and killing

our prototype nodes at specific times. We replay a real

trace of 2,000 nodes collected in the Overnet file-sharing

network in 2004 [2] at its original speed, as well as 5,

10, and 20 times faster. The most accelerated run result

in churn rates of 192 departures or joins per minute on

average for an average population of 650 simultaneously

active peers.

In addition to the nodes of the trace, we use a set of

100 static nodes, denoted as observers, to monitor the

dissemination and reception of messages. A set of 200

messages is sent by nodes belonging to the non-observer

set, one every 2 seconds. We plot the evolution of delays

at the observers, for increasing churn rates, and for a

static environment (with 650 nodes) as a baseline. As

already mentioned, communication is carried over UDP,

without ACKs being sent. Failed nodes are gradually

removed by Cyclon only. This means that most nodes

11

Fig. 7 Performance of the dissemination of 200 messages on

PlanetLab.

will have (temporarily) failed peers in their views, which

results in additional message losses.

Figure 6 presents the evolution of the delays and

illustrates the inherent capacity of Pulp, to cope with

dynamic environments. We observe that only a very

high churn rate leads to slightly increased delays (lower

plot of Figure 6). Interestingly, nodes pull more often

when there is more churn because the period ∆pull de-

creases as more messages are lost but the size of the

missing set does not diminish. This demonstrates that

the self-adaptation of the pulling period ∆pull also deals

with increasing loss in the communication and keeps the

rate of reception sufficiently high for all online nodes to

receive all published messages.

4.4 PlanetLab Experiments

Our second set of experiments is run on the PlanetLab

world-scale distributed testbed. PlanetLab is composed

of nodes that are extremely heterogeneous in load and

available network resources. We use a set of 300 ran-

domly chosen PlanetLab nodes. We evaluate dissemi-

nation delays and analyze the self-tuning of the pulling

period with varying message emission frequencies.

The experiments carried out on the Planetlab test-

bed highlight the ability of Pulp to achieve full cov-

erage in heterogeneous environments that are prone to

failures, message loss, and arbitrary delays. As a matter

of fact, Planetlab nodes experience significantly less re-

liable IP communication than typical computers on the

Internet, due to their massively parallel virtualization

and high load.

 0
 0.5

 1
 1.5

 2

 0 200 400 600 800 1000 1200 1400

M
es

sa
ge

s
fr

eq
ue

nc
y

 0

 10

 20

 30

 0 200 400 600 800 1000 1200 1400

P
ul

lin
g

pe
rio

d
di

st
rib

ut
io

n
(s

ec
on

ds
)

90th perc.
75th perc.

50th perc.
25th perc.

5th perc.

 0

 0.5

 1

 1.5

 0 200 400 600 800 1000 1200 1400

P
ul

l r
ep

lie
s

(/
pe

er
, /

se
co

nd
)

Time (seconds)

Useful Useless

Fig. 8 Evolution of the pulling frequency w.r.t. new messages

frequency.

The first experiment reproduces the scenario stud-

ied in the cluster and shown in Figure 4, with the no-

table difference that we use here 300 distinct Planet-

Lab nodes. The data representation is the same as for

Figure 4. A set of 200 messages are sent by nodes se-

lected randomly at a rate of one message every 3 sec-

onds (again, the time span deviation from 600 to 730

seconds is due to scheduling issues on heavily loaded

nodes).

One can observe in Figure 7 that, as before, the first

messages help to bootstrap the dissemination process by

notifying nodes of some publishing activity. Messages

then need approximately 30 seconds to reach half of

the network and all nodes but the 10% slowest ones

receive them in less than 60 seconds on average. Note

that some of the randomly selected PlanetLab nodes

failed or became unresponsive during our experiments,

as one can observe in the figure: the protocol achieves

a coverage of 100% of all live nodes at slightly less than

300 receptions.

Our second PlanetLab experiment evaluates the ca-

pacity of Pulp to self-tune the pull period ∆pull on

each peer. We consider again a network of 300 Plan-

etLab nodes with only one publisher, whose message

sending rate follows the frequency evolution of the up-

per plot of Figure 8: starting from a frequency of 0.2

(i.e., one message every 5 seconds) and increasing to 2

messages per second, for a duration of 475 seconds (100

messages). This steady increase is followed by the send-

ing of 200 additional messages at a rate of 2 messages

per second, followed by a sudden drop to one message

every 5 seconds for the last 20 messages. 320 messages

are sent in total.

12

 1
 10

 100
 1000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

M
es

sa
ge

s
se

nt

 0

 10

 20

 30

 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

P
ul

lin
g

pe
rio

d
di

st
rib

ut
io

n
(s

ec
on

ds
)

90th perc.
75th perc.

50th perc.
25th perc.

5th perc.

 0
 0.5

 1
 1.5

 2

 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

P
ul

l r
ep

lie
s

(/p
ee

r,/
se

co
nd

)

Time (seconds)

Useful Useless

Fig. 9 Reaction to a message burst with a one second minimal

pulling frequency.

We observe in the middle plot the distribution of the

pulling periods ∆pull computed by the self-adaptation

algorithm: the initial frequency is of one pull every 30

seconds (idle state). As soon as messages are published,

nodes discover that they miss some newly published

messages and adapt their frequencies accordingly. The

lower plot presents the number of pull requests issued

by nodes, distinguished between useful (i.e., resulting in

the reception of new information) and useless requests

(i.e., retrieving no new message). We observe that the

pulling frequency follows the evolution of the new mes-

sages frequency in the first phase, with a slightly os-

cillating behavior around the optimal value. This os-

cillation is typical of the control-loop-based adaptation

of the pulling frequency implemented by Pulp, and is

also a result of the latency between the observation and

the adaptation (as adaptation decision are made peri-

odically, on average half such a period is required be-

fore the adaptation takes place). This does not result

in significant delay increases for individual messages.

Then, as messages are being disseminated, most pull

operations are useful and the pulling frequency remains

high. As soon as most of the messages have reached all

nodes, the number of useless pulls grows, resulting in

an increase of the pulling period.

Overall, we observe that most of the pulls are suc-

cessful and result in delays low enough to sustain the

message sending rate during dissemination, whereas a

pull-based protocol with a fixed pulling period would

have either incurred high delays or a high number of

useless pulls. This observation further highlights the

importance of the self-adaptive pulling period.

Our final experiment evaluates the capacity of Pulp

to react to bursty message generation scenarios. It com-

plements the previous experiment (Figure 8). Figure 9

presents the dissemination of a total of approximately

2,000 messages in a network of 200 nodes. To better ob-

serve the behavior of the dissemination after the burst,

we voluntarily slow down the system reaction by setting

a very conservative minimum period for pull replies of

one second. The maximal period is maintained at 30

seconds. Note that the dissemination speed in fully-

loaded mode (i.e., when many messages are on-the-fly

in the network and are still being propagated) is a direct

function of this parameter, which in turn proportionally

impacts the dissemination time.

Messages are sent from all nodes in the following

manner: an initial message is sent by a first node, and

other nodes react to the first message reception by trig-

gering between 1 to 20 messages (their number is cho-

sen randomly). This scenario illustrates the behavior of

Pulp when messages are sent as bursts by combinato-

rial reaction. We observe on the upper plot the number

of messages sent per second (from any node in the net-

work). Note the log scale on the y axis. We start from

a steady state system with all pulling periods equal to

0, and one message is sent initially. Nodes receiving the

message by the initial push phase generate new mes-

sages which result in 198 messages being sent after a

warming period of 180 seconds, and a peak of 783 mes-

sages once all nodes receive the initial trigger message

as they turn to the minimal pulling frequency allowed

of one pull request per second.

As there are messages remaining from the burst to

be received by nodes in the network, nodes continue to

pull with a near-optimal success rate (the average num-

ber of useful and useless pull requests are shown on the

bottom graph). We observe that nodes stop pulling ap-

proximately at the same time. This is an expected result

as all nodes are pulling at the same (minimal) period

and the large number of messages to be received is much

larger than the number of nodes that are reached by the

initial push phases. Moreover, these initial push phases

reach different set of nodes, allowing all nodes to warm

up their pulling activity while distributing initial mes-

sages in similar amounts to all of them.

This experiment highlights the ability of Pulp to

disseminate at a very low cost (one message per sec-

ond and per node), large number of messages arriving

as burst from multiple senders. We note however that,

as claimed in our initial assumptions, Pulp is not tai-

lored nor designed to handle reactive systems (such as

eventing mechanisms) where the delays of reception of

particular messages are critical. Instead, Pulp carries

its goal of disseminating in an adaptive and robust man-

13

 0
 10
 20
 30
 40
 50
 60

 0 100 200 300 400 500 600

S
ec

on
ds

PULP (Fanout=3, TTL=3): Reception Delays Distribution

Max
90th perc.

75th perc.
50th perc.

25th perc.
5th perc.

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 100 200 300 400 500 600

S
ec

on
ds

Only−pull: Reception Delays Distribution

 0
 25
 50
 75

 100
 125
 150
 175
 200

 0 100 200 300 400 500 600

S
ec

on
ds

Only−push (Fanout=5, TTL=4): Reception Delays Distribution

 0
 20
 40
 60
 80

 100

 0 100 200 300 400 500 600

R
at

io

Only−push (Fanout=5, TTL=4): Hit and Duplicate ratios

Hit Ratio Dup Ratio

1msg
/20s

1msg
/2s

 0 100 200 300 400 500 600

 Message sending rate

Fig. 10 Comparison of Pulp with an initial seeding phase (top),
with no initial seeding phase hence relying only on push opera-

tions (middle) and a dissemination that uses only push to dis-

seminate new messages and implicit pull proposals.

ner sets of messages from multiple sources at extremely

low cost.

4.5 Comparison to Push-only and Pull-only

Disseminations

Our last experiment highlights the benefit of using the

Pulp hybrid pull-push approach to dissemination, as

opposed to a solution that would use only push or only

pull operations. We compare Pulp against two proto-

cols:

– A “pull-only” adaptive protocol. This is basically a

subset of Pulp, where the network is not seeded by

some initial push phase, but where we keep all other

features, in particular, the pulling period dynamic

adaptation.

– A “push-only” algorithm, which works as follows.

A node that wishes to publish some message initi-

ates a push phase, as for the regular Pulp proto-

col, but this operation is not completed by regular

pull operations. The push itself does not intend to

reach a full coverage of the network, which would

be totally impractical and overflow any routing in-

frastructure quickly. Instead, subsequent push oper-

ations are used to convey implicit pull offers about

ongoing disseminations and publicize the availabil-

ity of new data. When a node na pushes some new

message m to some node nb, na includes its list of

message identifiers (in the same way as in normal

Pulp). This list is sorted in the order of message

reception as seen by na (as all nodes can publish

messages, there is no global order on messages, thus

two nodes can have different orders for the same set

of received messages). In return, nb requests from

na the first message from na’s list (the oldest as

seen by na), among the ones it does not already

have. In this way, older messages get larger priori-

ties and, as there are more messages to disseminate,

the number of implicit pull offers grows accordingly

and helps resolve previous messages.

These two protocols help to highlight the behavior

of Pulp itself, as both implement its two key ideas:

(1) using pull frequency adaptation to adjust to changes

in message emission rates and (2) leveraging a sequence

of disseminations from various sources and the spread

of information about which elements are missing by an

initial push phase.

Figure 10 presents the distribution of dissemination

times for a set of 200 messages on a cluster hosting 500

nodes for the three protocols, as well as the duplicate

and hit rates of the push-only protocol. Messages are

published from random nodes in the network, but ac-

cording to the frequency that is shown by the bottom

plot: alternation between a frequency of 1 messages ev-

ery 2 seconds and 1 message every 20 seconds, for pe-

riods of 150 seconds.

The top plot presents the dissemination times ob-

tained by using Pulp, which are consistent with pre-

vious evaluations. Periods of high message sending fre-

quency imply low delays as the number of transient

messages in the network is kept to a minimum, yield-

ing more pull messages to sustain the frequency of new

messages. Periods of lower sending rate result in lower

activity hence higher maximal reception delays, but re-

maining at acceptable levels with a median delay of at

most 10 seconds and a maximal delay of 30 seconds

14

(note that this can be reduced by setting ∆pullmax to a

lower value).

The second plot presents the dissemination delay

for Pulp without the initial push phase. These results

convey those from Figure 5: delays increase drastically

when the seeding effect of the initial push phase is ab-

sent. Median delays are effectively doubled when com-

pared to the classical Pulp.

The third and fourth plots present the dissemination

results for the pure-push scenario: delays distribution,

hit ratio (proportion of nodes receiving a message) and

duplicate ratio (proportion of useless message recep-

tion compared to useful ones). The hit and duplicate

ratios are not shown for Pulp and its variant with no

push phase as the former is always 1 and the latter

always 0 by construction. We set the values of TTL

and Fanout for the push-only solution as the minimal

ones that yield a hit ratio of 1 for most messages. Under

such conditions, the duplicate ratio (mostly due to du-

plicates during the push phase) is around 80%, that is,

a message is received on average 900 times in a network

of 500 nodes. The lack of regular pull messages has the

consequence that messages are not comprehensively dis-

seminated when no further dissemination takes place,

or when the message sending rate drops suddenly.

Overall, this experiment shows that both key com-

ponents of Pulp are necessary for its proper operation,

and that, accordingly to the intuition, a hybrid and

adaptive approach yields the best results.

5 Related Work

Unlike structured dissemination overlays (typically us-

ing trees) that use reactive strategies to tolerate failures

and churn, gossip-based approaches proactively imple-

ment redundancy in the system and trade network over-

head for extreme robustness against failures. Building

upon the seminal work in this area where epidemics

were introduce to disseminate updates in a database [8],

many probabilistic gossip-based approaches have been

recently proposed [3,9,12,22,23]. There has been a grow-

ing interest in such proactive approaches in a context

where large-scale systems are highly dynamic. They

avoid the need for potentially slow recovery mechanisms

as well as the cost of maintaining structures in overlay

networks. More specifically, many approaches have been

proposed in the area of gossip-based video-streaming

and secure protocols, breaking the myth of the lack of

relevance of gossip protocols to distribute bandwidth-

intensive contents or cope with malicious behavior [4,

19,21,20,27,26].

Gossip-based dissemination protocols usually fall un-

der either of the push-only and pull-only category of

protocols as discussed earlier, both having their own

tradeoffs with respect to overhead (message redundancy),

delay and robustness.

The aforementioned collaborative video streaming

protocols combine the two methods in a context-depen-

dent manner: typically push-only protocols are used to

disseminate control messages so as for peers to subse-

quently pull useful stream packets. While the two pro-

tocols are combined, they are used for different pur-

poses precisely because they have different character-

istics. Push protocols are robust but introduce redun-

dancy and are relevant to disseminate control messages

where robustness is required and messages are typically

small. Pull protocols are used for the dissemination of

large content to limit redundancy. Chainsaw [26] uses

pull only to pull for new data in a dynamic network

based on a peer sampling mechanism. BAR Gossip [21]

and Flightpath [20] focus on tolerating the presence

of byzantine peers. In Coolstreaming [19], the content

location is pushed while the actual content is pulled

as in swarming systems. HEAP [11] accounts for peers

heterogeneity by letting nodes dynamically adjust their

contribution to gossip dissemination according to their

capabilities. In [4], several push-only gossip-based ap-

proaches that differ in the choice of the content be-

ing pushed are studied. More specifically, the authors

demonstrate that sending the most recent chunks to

random peers achieves close to optimal dissemination

with respect to rate and delay. In [5], a push-only pro-

tocol is combined with fountain codes (rateless erasure-

correcting codes) to eliminate the unecessary redun-

dancy of standard push protocols.

The approach of Pulp is to combine push and pull,

not simply to disseminate control messages on one hand

and the actual content on the other hand. This ap-

proach is shared to some extent by the following work.

The Interleave protocol [29], which is further evalu-

ated by [6], combines push and pull for set of messages

as Pulp does, but with an approach that differs in sev-

eral aspects. In Interleave, a list of sequential items is

considered. Push is used to propagate new items to a

large set of nodes in the system, while pull is used to

retrieve the oldest missing items from the set (as de-

cided from the sequence number of newest messages re-

ceived). As such, Interleave focuses on single-publisher

scenarios while Pulp targets multiple publishers. More-

over, the frequency of pull operations does not adapt to

the frequency of new messages, incurring either a po-

tentially high steady-state load or a lack of reactive-

ness in periods of heavy publishing activity. On the

other hand, an interesting contribution of Interleave

is to take into account the bandwidth limitations at

each peer, thus supporting more easily high-bandwidth

15

file diffusion in heterogeneous systems. The properties

of push/pull protocols for live video streaming are fur-

ther studied in [28], with the interesting conclusion that

RTT is an essential parameter for such delay sensitive

systems (different from those considered by Pulp).

In [25], the authors propose a hybrid dissemina-

tion mechanism that also aims at reducing the cost

of the push phase by limiting the number of dupli-

cates, and relying on a pull phase thereafter to com-

plete the dissemination. Nonetheless, the main differ-

ence with Pulp lies in the approach that is used for

limiting the duplicates in that push phase. In [25], a

structured network based on prefix routing is used con-

junctively with a random network. Both the structured

and random overlays are constructed in a delay-aware

manner. The structured network is based on a coarse-

grain structure, using only a few digits for prefix based

routing, allowing a more robust construction and main-

tenance. The push phase is based on prefix-precedence

relations and uses embedded trees that are found in the

structured network to seed the network with the new

messages. Meanwhile, the approach does not allow for

frequency-adaptive pull operations. Interestingly, the

authors of [25], based on simulation of their protocol,

share our observation from Section 4.2, that reaching

a small fraction of peers in the initial push phase has

only a small increased delay when compared to a push

phase that seeds most of the network. This observation

pledges in favor of the Pulp approach that stops push-

ing messages before duplicates are likely to occur rather

than maintaining a structure amongst peers to ensure

this property, as the former is more lightweight and ro-

bust in the long term. In any case, the two protocols

focus on optimizing different metrics: [25] concentrates

on minimizing delays, while Pulp prioritizes on low-

ering traffic, be it redundant data transfers or control

messages.

In [14], Karp et al. theoretically analyze the com-

bination of push and pull for disseminating a single

message. They propose using push-based dissemination

until n/ log n nodes have the message with high proba-

bility (exponential growth phase). From that point on,

each uninformed node has sufficiently high probability

of reaching an informed node by probing nodes at ran-

dom, so they switch to pull communication (quadratic

shrinking phase). The overall message complexity is

O(n log log n). As the algorithm relies on an exact esti-

mation of the number of rounds to execute during the

first phase, Karp et al. propose a median-counter al-

gorithm to determine the right phase transition time.

Nonetheless, contrary to Pulp that strives to avoid du-

plicate message deliveries, the goal of this mechanism

is to reduce delays. Hence, the first phase (push) is

used for as long as the probability of hitting a non-

informed node is higher than the probability of a non-

informed node randomly probing an informed one. As

a side-effect of limiting the push phase, the number of

redundant deliveries is reduced to some extent, how-

ever, it is far from being eliminated. Moreover, Karp et

al. focus on the independent dissemination of individual

messages, not taking advantage of streams of messages

and the potential interplay these messages can have in

enabling faster or more reliable dissemination overall.

Liu et al. [24] also use a hybrid mechanism that

mixes push and pull interactions for cache replica main-

tenance. In this context, a push operation refers to a

proactive replication from the “master” node and a pull

operation to a passive replication from nodes holding

replicas to nodes with free space as a result of periodic

exchanges.

Also in the domain of cache updates, Srinivasan et

al. [30] and Urgaonkar et al. [31] proposed to dynami-

cally adapt the frequency of pull requests from replica

holders to master nodes for the dynamic update of read-

only replicas in caches. Adaptation is performed in a

similar manner as in Pulp, by adding a constant to

the frequency as the number of updates to replicas in-

creases, and dividing the frequency when experiencing

too many useless pull requests.

6 Conclusion

The properties of gossip-based protocols have been wi-

dely studied in the literature. Such protocols rely on

randomization and are known to be simple, scalable and

extremely robust. Yet, they have long been deemed im-
practical, mainly because of the large gap between their

behaviors as predicted by theoretical models and as ex-

perienced in real networks. More specifically, the correct

operation of gossip-based protocols depends on many

external factors that are difficult to dimension prop-

erly without good knowledge of the underlying system

(e.g., its size, delays, lossiness, etc.). Moreover, gossip-

based dissemination protocols are usually considered

much more expensive than deterministic protocols in

terms of overhead. Yet, the robustness to churn of such

protocols make them more and more appealing to the

point that they have recently been used in the context

of video streaming applications.

In this context, we have presented Pulp, a light-

weight gossip-based dissemination protocol that com-

bines pull- and push-based approaches and performs

remarkably well in practice. Pulp disseminates flows of

messages originating from multiple sources to large sets

of nodes in a fully decentralized way. Gossip messages

exchanged by the push protocol carry information that

16

helps nodes perform pulls in a smart and self-adaptive

manner.

Thanks to its hybrid approach, Pulp limits the re-

dundant traffic from the push phase and the unneces-

sary polling from the pull phase, thereby being par-

ticularly network-efficient. Our deployment of Pulp in

real-world conditions on a cluster and on PlanetLab

demonstrates its good performance and its robustness

even in the face of high churn. While Pulp seamlessly

supports node failures, it does not explicitly take into

account the presence of selfish or malicious nodes. This

is an interesting area of research left for future work.

Acknowledgements This work was carried out during the te-

nure of Étienne Rivière’s ERCIM (European Research Consor-
tium for Informatics and Mathematics) “Alain Bensoussan” fel-

lowship. This work is supported in part by the Swiss National

Foundation Grant 102819.

References

1. http://www.planet-lab.org/.

2. Ranjita Bhagwan, Stefan Savage, and Geoffrey M. Voelker.
Understanding availability. In Proceedings of the 2nd In-

ternational Workshop on Peer-to-Peer Systems (IPTPS’03),

pages 256–267, Berkeley, CA, USA, February 2003.

3. Kenneth P. Birman, Mark Hayden, Oznur Ozkasap, Zhen

Xiao, Mihai Budiu, and Yaron Minsky. Bimodal multicast.
ACM Trans. Computer Systems, 17(2):41–88, May 1999.

4. Thomas Bonald, Laurent Massoulié, Fabien Mathieu, Diego
Perino, and Andrew Twigg. Epidemic live streaming: optimal

performance trade-offs. In SIGMETRICS, pages 325–336,
Annapolis, MA, USA, June 2008.

5. Mary-Luc Champel, Anne-Marie Kermarrec, and Nicolas Le
Scouarnec. Fog: Fighting the achilles’ heel of gossip protocols

with fountain codes. In SSS, pages 180–194, Lyon, France,

2009.

6. Renato Lo Cigno, Alessandro Russo, and Damiano Carra.

On some fundamental properties of P2P push/pull proto-
cols. In Proceedings of the 2nd International Conference on

Communications and Electronic (HUT-ICCE), pages 67–73,

HoiAn, Vietnam, jun 2008.

7. B. Cohen. Incentives to build robustness in BitTorrent. Tech-
nical report, http://www.bittorrent.com/bittorrentecon.

pdf, May 2003.

8. Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John

Larson, Scott Shenker, Howard Sturgis, Dan Swinehart, and
Doug Terry. Epidemic algorithms for replicated database
maintenance. In Proceedings of the Sixth Annual ACM Sym-

posium on Principles of Distributed Computing (PODC’87),

pages 1–12, Vancouver, Canada, August 1987.

9. Patrick Eugster, Sidath Handurukande, Rachid Guerraoui,
Anne-Marie Kermarrec, and Petr Kouznetsov. Lightweight

probabilistic broadcast. ACM Transaction on Computer

Systems, 21(4), November 2003.

10. Davide Frey, Rachid Guerraoui, Anne-Marie Kermarrec,
Boris Koldehofe, Martin Mogensen, Maxime Monod, and
Vivien Quéma. Heterogeneous gossip. In Middleware, Ur-
bana, IL, USA, 2009.

11. Davide Frey, Rachid Guerraoui, Anne-Marie Kermarrec,

Martin Mogensen, Maxime Monod, and Vivien Quéma. Gos-
siping Capabilities. Technical Report LPD-REPORT-2008-

010, EPFL, 2008.

12. Ayalvadi J. Ganesh, Anne-Marie Kermarrec, and Lau-
rent Massoulié. Peer-to-peer membership management for

gossip-based protocols. IEEE Transactions on Computers,

52(2):139–149, February 2003.

13. Mark Jelasity, Spyros Voulgaris, Rachid Guerraoui, Anne-
Marie Kermarrec, and Maarten van Steen. Gossip-based peer

sampling. ACM Transactions on Computer Systems, 25(3),

August 2007.

14. R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking.
Randomized rumour spreading. In IEEE Proc. 41st Ann.

Symp. Foundations of Computer Science (FOCS), page 565,

November 2000.

15. Srinivas Kashyap, Supratim Deb, K. V. M. Naidu, Rajeev

Rastogi, and Anand Srinivasan. Efficient gossip-based ag-

gregate computation. In PODS ’06: Proceedings of the
twenty-fifth ACM SIGMOD-SIGACT-SIGART symposium

on Principles of database systems, pages 308–317, New York,

NY, USA, June 2006. ACM Press.

16. Anne-Marie Kermarrec, Laurent Massoulié, and Ayalvadi J.
Ganesh. Probabilistic reliable dissemination in large-scale

systems. IEEE Transactions on Parallel and Distributed

Systems, 14(3):139–149, March 2003.

17. Anne-Marie Kermarrec and Maarten van Steen. Gossip-
ing in distributed systems. ACM Operating System Review,

41(5):2–7, October 2007.

18. Dionysios Kostoulas, Dimitrios Psaltoulis, Indranil Gupta,

Kenneth P. Birman, and Alan J. Demers. Active and pas-
sive techniques for group size estimation in large-scale and

dynamic distributed systems. Journal of Systems and Soft-

ware, 80(10):1639–1658, 2007.

19. Bo Li, Yang Qu, G.Y. Keung, Susu Xie, Chuang Lin,
Jiangchuan Liu, and Xinyan Zhang. Inside the new cool-

streaming: Principles, measurements and performance impli-
cations. In Proceedings of the 27th Conference on Com-

puter Communications (IEEE INFOCOM), pages 1031–

1039, April 2008.

20. Harry C. Li, Allen Clement, Mirco Marchetti, Manos Kaprit-
sos, Luke Robison, Lorenzo Alvisi, and Mike Dahlin. Flight-

path: Obedience vs. choice in cooperative services. In Pro-

ceedings of the 8th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI ’08), December

2008.

21. Harry C. Li, Allen Clement, Edmund L. Wong, Jeff Napper,

Lorenzo Alvisi, and Michael Dahlin. BAR gossip. In Proc.
of 7th Symposium on Operating System Design and Imple-

mentation (OSDI ’06), pages 191–2004, November 2006.

22. Meng Lin and Keith Marzullo. Directional gossip: Gossip in

a wide area network. Technical Report CS1999-0622, Uni-
versity of California, San Diego, 1999.

23. Meng Lin, Keith Marzullo, and Stefano Masini. Gossip ver-

sus deterministic flooding: low-message overhead and high-
reliability for broadcasting on small networks. In Intl. Sym-

posium on Distributed Computing (DISC 2000), pages 85–

89, Toledo, Spain, 2000.

24. Xiaotao Liu, Jiang Lan, Prashant Shenoy, and Krithi Ra-
maritham. Consistency maintenance in dynamic peer-to-peer

overlay networks. Computer Networks, 50(6):859–876, 2006.

25. Thomas Locher, Remo Meier, Stefan Schmid, and Roger

Wattenhofer. Push-to-pull peer-to-peer live streaming. In
Proceedings of DISC 2007: 21st International Symposium

on Distributed Computing, Lemosos, Cyprus, sep 2007.

26. Vinay Pai, Kapil Kumar, Karthik Tamilmani, Vinay Sam-

bamurthy, and Alexander E. Mohr. Chainsaw: Eliminating
trees from overlay multicast. In IPTPS’05: the fourth Inter-

national Workshop on Peer-to-Peer Systems, pages 127–140,

February 2005.

http://www.bittorrent.com/bittorrentecon.pdf
http://www.bittorrent.com/bittorrentecon.pdf

17

27. Fabio Picconi and Laurent Massoulié. Is there a future
for mesh-based live video streaming? In Proceedings of the

Eigth International Conference on Peer-to-Peer Computing

(P2P’08), Aachen, Germany, September 2008.

28. Alessandro Russo and Renato Lo Cigno. Delay-aware

push/pull protocols for live video streaming in p2p systems.
In Proceedings of the IEEE International Conference on

Communications (ICC), May 2010.

29. Sujay Sanghavi, Bruce Hajek, and Laurent Massoulié. Gos-

siping with multiple messages. In Proceedings of the 29th

Conference on Computer Communications (IEEE INFO-
COM), pages 2135–2143, May 2007.

30. Raghav Srinivasan, Chao Liang, and Krithi Ramamritham.
Maintaining temporal coherency of virtual data warehouses.

In RTSS ’98: Proceedings of the IEEE Real-Time Systems

Symposium, page 60, Washington, DC, USA, 1998. IEEE
Computer Society.

31. Bhuvan Urgaonkar, Anoop George Ninan, Mohammad Sal-
imullah Raunak, Prashant Shenoy, and Krithi Ramam-

ritham. Maintaining mutual consistency for cached web ob-

jects. In ICDCS ’01: Proceedings of the The 21st Interna-
tional Conference on Distributed Computing Systems, page

371, Washington, DC, USA, April 2001. IEEE Computer So-

ciety.

32. Robbert van Renesse, Yaron Minsky, and Mark Hayden. A

gossip-style failure detection service. In IFIP, editor, Proc.
of Middleware, the IFIP International Conference on Dis-

tributed Systems Platforms and Open Distributed Processing,

pages 55–70, The Lake District, UK, 1998.

33. Spyros Voulgaris, Daniela Gavidia, and Maarten van Steen.

CYCLON: Inexpensive membership management for un-
structured P2P overlays. Journal of Network and Systems

Management, 13(2), June 2005.

34. X. Zhang, J. Liu, B. Li, and T.-S. P. Yum. Coolstream-

ing/DONet: A data-driven overlay network for efficient live

media streaming. In Proceedings of the 24th Conference
on Computer Communications (IEEE INFOCOM), pages

2102–2111, March 2005.

Pascal Felber received his M.Sc. and
Ph.D. degrees in Computer Science

from the Swiss Federal Institute of

Technology. He has then worked at

Oracle Corporation and Bell-Labs in

the USA, and at Institut EURECOM

in France. Since October 2004, he is

a Professor of Computer Science at the University of

Neuchâtel, Switzerland, working in the field of depend-

able, distributed, and concurrent systems. He has pub-

lished over 80 research papers in various journals and

conferences.

Anne-Marie Kermarrec is a Se-

nior Researcher at INRIA (France)

since 2004, where she is leading the

ASAP (As Scalable As Possible) re-

search group, focusing on large-scale

dynamic distributed systems. Her re-

search interests are peer to peer net-

works, large-scale information man-

agement and epidemic protocols. Before that, Anne-

Marie was with Microsoft Research in Cambridge (UK).

She obtained her Ph.D. from the University of Rennes

(France) in October 1996. Anne-Marie has been awarded

a European Research Council Starting Grant in 2008

for her 5 year GOSSPLE project.

Lorenzo Leonini graduated in com-

puter science in 2005. Since then, he

has been a PhD student at the univer-

sity of Neuchâtel, where his research

interest have been in the design and

evaluation of large-scale distributed sys-

tems. Lorenzo has been working on

distributed systems for information re-

trieval, epidemic dissemination, recommendation sys-

tems, amongst others. He is the main designer and ar-

chitect of the Splay system.

Étienne Rivière is a lecturer at the

University of Neuchâtel, Switzerland.

He received his PhD in Computer Sci-

ence from the University of Rennes,

France in November 2007. In 2008

and 2009, Étienne has been a post-

doctoral fellow under an “Alain Ben-

soussan” grant from ERCIM, which

led him to the University of Neuchâtel and to NTNU

Trondheim in Norway. His research interests lie in the

design, analysis, implementation and evaluation of large-

scale distributed systems and concurrent systems. He is

a member of the ACM, the IEEE and Usenix.

Spyros Voulgaris is an Assistant

Professor at the Vrije Universiteit Am-

sterdam since October 2008, focusing

on massive scale decentralized systems

both in wired and wireless settings.

Before that, he was a postdoc at ETH

Zurich since 2006. He has obtained

his Ph.D. from the Vrije Universiteit

Amsterdam (2006), his M.Sc. from the University of

Michigan in Ann Arbor (1999), and his B.Sc. from the

University of Patras (1997). He has worked at Microsoft

Research Cambridge (2003), Hughes Network Systems

in Maryland (1999-2001), and HP Labs (1998).

	Introduction
	The Push-Pull Dilemma
	The Pulp Protocol
	Evaluation
	Related Work
	Conclusion

