
EPIDEMIC-BASED SELF-ORGANIZATION IN

PEER-TO-PEER SYSTEMS

SPYROSVOULGARIS

COPYRIGHT c© 2006BY SPYROSVOULGARIS

VRIJE UNIVERSITEIT

EPIDEMIC-BASED SELF-ORGANIZATION IN

PEER-TO-PEER SYSTEMS

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. L.M. Bouter,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de faculteit der Exacte Wetenschappen
op dinsdag 3 oktober 2006 om 10.45 uur

in het auditorium van de universiteit,
De Boelelaan 1105

door

SPYRIDON VOULGARIS

geboren te Athene, Griekenland

promotoren: prof.dr.ir. M.R. van Steen
prof.dr. A.S. Tanenbaum

CONTENTS

ACKNOWLEDGEMENTS xix

I PROTOCOLS 1

1 INTRODUCTION 3
1.1 Desired Solution .5
1.2 Why not DHTs? . 6
1.3 The Gossiping Model of Communication7

1.3.1 Traditional Gossiping . 7
1.3.2 Gossip-based Topology Construction7

1.4 Why Gossiping? .8
1.5 Research Methodology .9
1.6 Outline and Contributions .10

2 BUILDING RANDOM OVERLAYS: CYCLON 13
2.1 The Protocol .15

2.1.1 Basic Swapping .15
2.1.2 Enhanced Swapping .16

2.2 Basic Properties .18
2.2.1 Connectivity .20
2.2.2 Convergence .20
2.2.3 Degree Distribution .23
2.2.4 Dependency on Gossip Length25

2.3 Adding Nodes .27
2.4 Removing Nodes .28
2.5 Robustness - Self Healing Behavior29
2.6 Bandwidth Considerations .32
2.7 Applications .32
2.8 The NEWSCASTProtocol . 33

2.8.1 Principal Operation .34

VI CONTENTS

2.8.2 Properties of NEWSCAST. 35
2.9 An Application: Aggregation .38
2.10 Related Work .42
2.11 Conclusions and Future Work .44

3 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE 45
3.1 Introduction .46
3.2 The PEER SAMPLING SERVICE 47

3.2.1 API .48
3.2.2 Generic Protocol Description48
3.2.3 Design Space .51
3.2.4 Implementation .52

3.3 Local Randomness .53
3.3.1 Experimental Settings54
3.3.2 Test Results .55
3.3.3 Conclusions .57

3.4 Global Randomness .57
3.4.1 Properties of Degree Distribution58
3.4.2 Clustering and Path Lengths64

3.5 Fault Tolerance .66
3.5.1 Catastrophic Failure .66
3.5.2 Churn .68
3.5.3 Trace-driven Churn Simulations73

3.6 Wide-Area-Network Emulation75
3.7 Discussion .78

3.7.1 Randomness .78
3.8 Related Work .80

3.8.1 Membership Management Protocols80
3.8.2 Complex Networks .82
3.8.3 Unstructured Overlays82
3.8.4 Structured Overlays .83

3.9 Concluding Remarks .83

4 FROM RANDOMNESS TO STRUCTURE: VICINITY 85
4.1 Design Preamble .86
4.2 The Topology Construction Framework87

4.2.1 Model Outline .87
4.2.2 The Selection Function87
4.2.3 Design Rationale .88

4.3 The VICINITY Protocol .90
4.4 Discussion on the Design Choices92

CONTENTS VII

4.5 Outline of Evaluation .93
4.5.1 Selection of Test Cases93
4.5.2 Generic Experimental Settings94

4.6 Test Case A: Forming a 2-D Spatial Grid95
4.6.1 Demonstration of Test Case A95
4.6.2 Analysis of Test Case A97

4.7 Test Case B: Clustering Nodes in Groups100
4.7.1 Demonstration of Test Case B102
4.7.2 Analysis of Test Case B102

4.8 Discussion and Related Work .106

II APPLICATIONS 109

5 ROUTING TABLE MANAGEMENT: BUILDING PASTRY 111
5.1 Pastry-like P2P Routing .112

5.1.1 Basic Concept .112
5.1.2 Internal Structure of the Routing Tables113
5.1.3 Routing .113

5.2 Building Routing Tables .114
5.2.1 The Principal Idea .114
5.2.2 Multilayer Architecture115

5.3 Experimental Setting .117
5.4 Experimental Results and Analysis118

5.4.1 Bootstrapping .118
5.4.2 Robustness to Large-Scale Failures119
5.4.3 Bandwidth Considerations121

5.5 Conclusions and Related Work122

6 INFORMATION DISSEMINATION 125
6.1 Background and Related Work125
6.2 Evaluating a Dissemination System127
6.3 Deterministic Dissemination .128
6.4 Probabilistic Dissemination .130

6.4.1 The RANDCAST Dissemination Algorithm130
6.5 Hybrid Dissemination .132

6.5.1 The RINGCAST Dissemination Algorithm132
6.6 Evaluation .136

6.6.1 Evaluation in a Static Failure-free Environment137
6.6.2 Evaluation after Catastrophic Failure141
6.6.3 Evaluation under Churn144

VIII CONTENTS

6.7 Discussion and Future Work .148

7 SEMANTIC OVERLAY NETWORKS 151
7.1 Overview .151
7.2 Model Outline .153
7.3 Gossiping Framework .153
7.4 Experimental Environment and Settings154
7.5 Performance Evaluation .157

7.5.1 Convergence Speed on Cold Start157
7.5.2 Adaptivity to Changes of User Interests158
7.5.3 Effect on Semantic Hit Ratio159
7.5.4 Single Node Joins .160
7.5.5 Behavior under Node Churn160

7.6 Bandwidth Considerations .161
7.7 Discussion and Related Work .162

8 SUB-2-SUB: PURELY P2P PUBLISH/SUBSCRIBE 165
8.1 Overview .166
8.2 Issues in Publish / Subscribe Systems167
8.3 System Model .167
8.4 SUB-2-SUB in a Nutshell .168
8.5 The SUB-2-SUB Dissemination Overlay171

8.5.1 Spreading Events .173
8.6 Building the Dissemination Overlay174

8.6.1 Building Random Links177
8.6.2 Building Overlapping-Interest Links177
8.6.3 Building Ring Links .178

8.7 Evaluation .179
8.7.1 Experimental Setup .180
8.7.2 Jump-starting SUB-2-SUB182
8.7.3 Event Dissemination .183
8.7.4 Propagation Speed .184
8.7.5 Single Node Joins .184

8.8 Related Work and Conclusions185

9 CONCLUSIONS 187
9.1 Randomized Overlays .187

9.1.1 High-level Observations187
9.1.2 Detailed Observations189

9.2 Structured Overlays .191
9.3 Applications .192

CONTENTS IX

9.4 Future Directions .193

SAMENVATTING 197

BIBLIOGRAPHY 203

X CONTENTS

L IST OF FIGURES

2.1 An example of swapping between nodes 2 and 9. Note that, among
other changes, the link between 2 and 9 reverses direction.17

2.2 The generic gossiping skeleton for CYCLON. 19
2.3 Implementation of the generic gossiping skeleton hooks, for the

CYCLON protocol. .19
2.4 (a) Average shortest path length between two nodes for different

view lengths. (b) Average clustering coefficient taken over all nodes.22
2.5 Converged state of CYCLON. (a) Average shortest path length

between two nodes. (b) Average clustering coefficient taken over
all nodes. .23

2.6 Indegree distribution in converged 100,000 node overlay, for basic
swapping, enhanced swapping, and an overlay where each node
hasℓ randomly chosen outgoing links. (a) View lengthℓ = 20. (b)
View lengthℓ = 50. 24

2.7 Effect of gossip length on convergence speed.N=100,000. 25
2.8 (a) Time until dead nodes are forgotten. (b) Number of dead links.29
2.9 (a) Number of disjoint clusters, as a result of removing a large

percentage of nodes. Shows that the overlay does not break into
two or more disjoint clusters, unless a major percentage of the
nodes are removed. (b) Number of nodes not belonging to the
largest cluster. Shows that in the first steps of clustering only a few
nodes are separated from the main cluster, which still connects the
grand majority of the nodes. .31

2.10 Tolerance to node removal, as a function of the view length. Net-
work size is 100K nodes. .31

2.11 NEWSCASTconverged state. (a) Average shortest path length be-
tween two nodes. (b) Average clustering coefficient taken over all
nodes. .35

2.12 Indegree distribution in converged 100,000 node overlay, for NEWS-
CAST, CYCLON (enhanced swapping), and a regular random graph
of outdegreeℓ. 37

XII L IST OF FIGURES

2.13 (a) Time until dead nodes are forgotten. (b) Number of dead links.37

2.14 Aggregation in static overlays.39

2.15 Aggregation in dynamic overlays.40

2.16 Aggregation in piggy-backed version.42

3.1 The skeleton of a gossip-based implementation of the PEER SAM -
PLING SERVICE. 49

3.2 Evolution of maximal indegree in the growing scenario (recall that
growing stops in cycle 20). The runs of the following protocols
are shown: peer selection is either rand or tail, view selection is
blind, healer or swapper, and view propagation is push or pushpull.60

3.3 Evolution of standard deviation of indegree in all scenarios of
pushpull protocols. .61

3.4 Converged values of indegree standard deviation.62

3.5 Converged indegree distributions on linear and logarithmic scales.62

3.6 Comparison of the converged indegree distribution over the net-
work at a fixed time point and the indegree distribution of a fixed
node during an interval of 50,000 cycles. The vertical axis repre-
sents the proportion of nodes and cycles, respectively.63

3.7 Autocorrelation of indegree of a fixed node over 50,000 cycles.
Confidence band corresponds to the randomness assumption: a
random series produces correlations within this band with 99%
probability. .64

3.8 Evolution of the average path length and the clustering coefficient
in all scenarios. .65

3.9 Converged values of clustering coefficient and average path length. 66

3.10 The number of nodes that do not belong to the largest connected
cluster. The average of 100 experiments is shown. The random
graph almost completely overlaps with the swapper protocols. . .67

3.11 Removing dead links following the failure of 50% of the nodes in
cycle 300. .68

3.12 Standard deviation of node degree with churn rate 1%. Node de-
gree is defined over theundirectedversion of the subgraph oflive
nodes. TheH = 0 case is not comparable to the shown cases; due
to reduced self-healing, nodes have much fewer live neighbors
(see Figure3.13) which causes relatively low variance.70

3.13 Average number of dead links in a view with churn rate 1%. The
H = 0 case is not shown; it results in more than 11 dead links per
view on average, for all settings.70

L IST OF FIGURES XIII

3.14 Size of largest connected cluster and degree standard deviation
under catastrophic churn rate (30%), with the random bootstrap-
ping method. Individual curves belong to different values ofSbut
the measures depend only onH, so we do not need to differentiate
between them. Connectivity and node degree are defined over the
undirectedversion of the subgraph oflive nodes. 72

3.15 Churn in the Saroiu traces. Full time span of 3600 one minute
cycles and zoomed in to cycles 2250 to 2750.74

3.16 Average number of dead links per view, based on the Saroiu Gnutella
traces. All experiments use random peer selection andS= 0. . . . 74

3.17 Evolution of standard deviation of node degree based on the Saroiu
Gnutella traces. All experiments use random peer selection and
S= 0. .75

3.18 Evolution of in-degree standard deviation, clustering coefficient,
and average path length in all scenarios forreal-world experiments.77

4.1 The two-layered framework .89

4.2 Communication in the two-layered framework. Each layer gossips
to the respective layer of other nodes.90

4.3 The generic gossiping skeleton for CYCLON and VICINITY 91

4.4 Implementation of the generic gossiping skeleton hooks, for the
V ICINITY protocol. .92

4.5 Snapshots depicting the evolution of a 2,500 node overlay, form-
ing a 50×50 grid structure. .96

4.6 The three protocol settings we compare.97

4.7 Evolution of topology construction for test case A.99

4.8 Snapshots depicting the evolution of a 2,500 node overlay cluster-
ing in 100 groups of 25 nodes each.101

4.9 Evolution of topology construction for test case B.103

4.10 Snapshot of the overlay produced by VICINITY -alone. Some nodes
are still not connected to their group’s cluster after 1000 cycles,
and they will never be. .104

5.1 Communication of nodeA during one communication cycle. . . .116

5.2 Average number of filled routing table rows.119

5.3 (a) Number of routing steps taken on average;(b) Percentage of
messages reaching their destination.120

5.4 Average number of filled routing table rows when recovering from
a 50% node crash that happened at cycled. 121

XIV L IST OF FIGURES

5.5 Message routing while recovering from a 50% node crash that
happened at cycled. Left: Average routing steps taken. Right:
Percentage of messages delivered.122

6.1 (a) The generic dissemination algorithm. (b) Gossip target selec-
tion for deterministic dissemination (flooding).129

6.2 Gossip target selection for the RANDCAST dissemination algorithm.131
6.3 Example of a RINGCAST overlay. Nodes are organized in a bidi-

rectional ring (by means of thed-links), and each one has a num-
ber (in this case only one) outgoing random links (r-links). 133

6.4 Gossip target selection for the RINGCAST dissemination algorithm.134
6.5 Example of a message dissemination in a partitioned ring. For

clarity, only a few of the followed r-links are shown.135
6.6 Dissemination effectiveness as a function of the fanout, for a failure-

free static network of 10K nodes. (a) Miss ratio averaged over
100 experiments; (b) Percentage of 100 experiments that resulted
in complete dissemination. .138

6.7 Dissemination progress in a static failure-free network of 10K
nodes. 100 experiments of each protocol are shown.139

6.8 Total number of messages sent, divided in messages sent to not-
yet-notified and already notified nodes.140

6.9 Dissemination effectiveness as a function of the fanout for static
network of 10K nodes, after catastrophic failures of 1%, 2%, 5%,
and 10% of the nodes. .142

6.10 Dissemination progress in a static network of 10K nodes, after
catastrophic failure killing 500 nodes (5%). 100 experiments of
each protocol are shown. .143

6.11 Total number of messages sent, divided in messages sent to not-
yet-notified, already notified, and dead nodes.143

6.12 Dissemination effectiveness as a function of the fanout, in the
presence of node churn. In each cycle, a randomly selected 0.2%
of the nodes was removed, and replaced by an equal number of
newly joined nodes. .145

6.13 Distribution of node lifetimes, summed over 100 experiments. . .146
6.14 Distribution of lifetimes of nodes that were not notified, summed

over 100 experiments. .147
6.15 Nodes organized in a ring based on domain name proximity. . . .149

7.1 The generic gossiping skeleton for CYCLON and VICINITY 154
7.2 Implementation of the generic gossiping skeleton hooks, for the 3

V ICINITY versions. .155

L IST OF FIGURES XV

7.3 The four configurations we compare.157

7.4 (a) Convergence of sem. views’ quality. (b) Evolution of semantic
lists’ quality for a sudden change in all users’ interests at cycle 550.157

7.5 Semantic hit ratio, for gossip lengths 1, 3, and 5 in each layer. . .159

7.6 CDF of the speed by which the semantic list of a joining node is
filled with optimal neighbors. .160

7.7 (a) The average number of optimal alive neighbors in the semantic
list. (b) The average number of alive neighbors in the VICINITY

view. .161

8.1 A set of subscriptions and an event.168

8.2 Partitioning of an one-dimensional event space in homogeneous
subspacesHi .169

8.3 The conceptual SUB-2-SUB dissemination overlay. For each ho-
mogeneous subspace nodes are linked in a ring structure. Only
the ring links are shown.Random overlapping-interestlinks are
omitted for clarity. .172

8.4 The actual SUB-2-SUB dissemination overlay. For any possible
event all matching subscribers are linked in a ring structure. How-
ever, no multiple links between the same two nodes are kept. Only
the ring links are shown.Random overlapping-interestlinks are
omitted for clarity. .172

8.5 The three sets of links each subscriber should maintain. Shaded
areas denote the areas where links of the respective type are ap-
propriate (for the given subscriber).173

8.6 The SUB-2-SUB Architecture.175

8.7 Layered communication. Each layer of a node gossips exclusively
to the respective layer of other nodes. Interaction between layers
is restricted to passing around links within a single node.176

8.8 The VICINITY selection function for building ring links, in pseu-
docode. It selects ring links for nodeP, out of the set of node
descriptorsD. Argumentk, determining the number of nodes that
should be returned in the standard version of VICINITY , is not
taken into account. .179

8.9 The HyperSpace class. .180

8.10 Example of rectangle removal in a two-dimensional space. First
sweeping along thex and then along they dimension. Generally,
in anN-dimensional space, we would carry on the same process
for all N dimensions. .181

XVI L IST OF FIGURES

8.11 Construction of the rings in time. Light bars show the percentage
of ring links already in place. Dark bars show the percentage of
rings that are complete. 10K nodes.182

8.12 Distribution of ring lengths. .183
8.13 Event dissemination. Light bars show the hit ratio fornon-complete

disseminations. Dark bars show the percentage of disseminations
that were complete (events delivered to all their matching sub-
scribers). 10K nodes; 3 attributes; power law interest distribution.183

8.14 Hops to complete event dissemination, as a function of the number
of matching subscribers (ring length). 10K nodes; 3 attributes;
power law interest distribution.184

8.15 Distribution of cycles it takes subscribers and publishers to join. .185

L IST OF TABLES

3.1 Summary of the basic idea behind the classes of tests in thediehard
test suite for random number generators. In all cases tests are run
with several parameter settings. For a complete description we
refer to [Marsaglia 1995]. 56

3.2 Partitioning of the push protocols in the growing overlay scenario.
Data corresponds to cycle 300. Cluster statistics are over the par-
titioned runs only. .60

ACKNOWLEDGEMENTS

Accomplishing a PhD is without doubt a significant achievement in one’s life.
Although it is habitually accredited to a single person, its author, in most cases
there is a number of people who have contributed one way or another to this goal.
Having completed my thesis, it is time to give credit to some of the people that
played a role in my PhD.

Undoubtedly, my principal promotor, Maarten van Steen, deserves the lion’s
share of the credit. Without any sense of exaggeration, Maarten combined all
I needed in an advisor: support, motivation, and excellent tutoring in research.
Maarten has always been enthusiastically devoted to research and to his supervis-
ing role. Despite his admittedly busy schedule, he always religiously respected our
weekly meeting slot. These meetings provided the ground for numerous construc-
tive discussions, fruitful brainstorming, in-depth analyses, and direction planning.
Maarten taught me a whole lot of things, from the gory details of authoring, pre-
senting, and various practical issues to a high level vision in research. This was
further enhanced by his talent in passing on his enthusiasm for original research
and nifty new ideas to people around him. Maarten played a crucial role in shaping
my research thinking and mentality, and I am truly grateful to him.

My interaction with my second promotor, Andy Tanenbaum, although more
sporadic, was of great value. Andy gave a critical view to peer-to-peer systems,
raising interesting issues, and questioning the “decentralization objectives” that
Maarten and I were taking almost for granted. I am grateful to him for his interest-
ing feedback, and for giving me the opportunity to work in this highly competent
research environment.

Then, I would like to thank the members of my reading committee, Anne-
Marie Kermarrec (also in the role of areferent), Ken Birman, Ḿark Jelasity, Her-
bert Bos, and Guszti Eiben for their effort and time in reviewing this dissertation.
I have put their comments to good use.

XX ACKNOWLEDGEMENTS

In the past I had the opportunity to collaborate closely with two of the mem-
bers of my reading committee, Ḿark Jelasity and Anne-Marie Kermarrec. Márk
Jelasity introduced me to the world of epidemic protocols during his postdoc at the
Vrije Universiteit. I later visited him at the University of Bologna, in the context
of a joint research effort that resulted in the work presented in Chapter3. His un-
derstanding of the intrinsic details of epidemic protocols often leads to long inter-
esting discussions. Ḿark has recently been visiting a number of research groups
around Europe, spreading the notion of epidemics in an epidemic-like fashion!
Anne-Marie Kermarrec has been my supervisor during my internship at Microsoft
Research Cambridge, in the summer of 2003. We have continued our collabora-
tion, and I visited her at the IRISA/INRIA research institute in Rennes duringthe
summer of 2005. Anne-Marie helped me in learning to take a step back, and get
a high-level view of my work. She also has a very good sense of finding appli-
cations for the protocols we have been working on. I would like to thank both
Anne-Marie and Ḿark, and I hope to keep up our collaboration in the future.

Then come my colleagues at the Vrije Universiteit. I would like to thank
them all for a very pleasant and friendly working environment, and for many nice
discussions during lunch, at the recently established “Tea at three”, orin various
other occasions. In fear of offending somebody by not mentioning him orher,
I will avoid referring to you by name, and will thank you all as a group. I will
only make an exception for my two officemates, Michal and Swami. The three of
us, coming from diverse cultures, formed an interesting combination and a very
pleasant atmosphere in P4.30. I will never forget our numerous discussions on
world politics, ethnic culture, history, ehhh . . . and occasionally science!

I would also like to thank some people that played a role in my decision to
pursue a PhD. One of them is Ulrika in Lund, who was the “coolest” PhD student
I met while doing my Master’s at the University of Michigan, and showed me
that doing research does not rule out enjoying life! The other two are Yannis
in Chicago and Baris in Washington DC. Many thanks to both of you for your
valuable contribution in selecting the Vrije Universiteit for my doctoral studies.

At this point, I would like to thank my friends in Amsterdam for providing me
with moral support and a great deal of—so much needed—pleasant distractions
during my PhD years. Many thanks to Anna, Madelijne, Rodrigo, Nikos (×3),
Takis (“the President”), Emilios, Dafni, Ankie, Eva, Tom, Eduardo, Vicky, Vic-
toria, and many many more. I would also like to thank my “huisgenoten” (Liza,
Hetty, Ronny, Rosanne, Rink, Dejan, etc.) for forming an enjoyable socializing
environment, and for putting up with my busy schedule.

ACKNOWLEDGEMENTS XXI

At another note, I am deeply thankful to the Alexander Onassis Public Benefit
Foundation in Greece for sponsoring my studies by means of a student scholar-
ship. Such generous sponsorships prove the public benefit culture ofthe foun-
dation, and create invaluable opportunities for boosting the creativity of young
researchers and fostering innovation.

Last but not least, I would like to say a big THANK YOU to my family.
My parents who have always unconditionally supported me in all respects,and
my brother Kostas for being always a very close and dependable friend. I am
grateful to them not only for their support during the years of my PhD, butalso for
their guidance, encouragement, and motivation throughout my whole journey in
education and my life in general. Of course, I should thank them for their patience
as well! I would like to end my acknowledgements by wishing my brother success
with his own PhD.

Spyros Voulgaris

Zürich, August 2006

Part I

PROTOCOLS

CHAPTER 1

Introduction

We are arguably living in the communications revolution era. Communications
have never been as ubiquitous, massive, fast, and inexpensive as they are today.
Networks in general and the Internet in particular play a catalytic role in contem-
porary societies. The days when the Internet was a mere research tool,or a com-
munication channel exclusively for academic and military institutions are long left
behind. Access to the Internet has spread at an astonishing speed, appealing to an
increasingly broader public, emerging the Net from an academic elite tool to a
global cult that shapes the way of living on the planet.

The Internet offers a wealth of functionalities by means of deployedservices.
TheWorld Wide Web, and theElectronic Mail(e-mail) are without doubt the two
principal services that helped the Internet break its strictly academic barriers, and
which remain among the most popular services nowadays. Other “traditional”
services includeTelnet, the File Transfer Protocol(ftp), newsgroups, IRC and
several others. More recently, a number of more complex services haveappeared,
including e-commerce, online auctions, file sharing systems, streaming services,
etc. This tremendous growth of the Internet has naturally caused an evolution of
the models of communication, that we will discuss below.

Early Internet services were designed and built around two principal paradigms,
namely the client-server model and centralization. Theclient-server modelim-
poses a clear distinction between nodes that provide a service (servers) and those
that make use of it (clients). Clients are passive entities accessing the service pro-
vided by dedicated nodes, the servers.Centralization, in its turn, refers to the fact
that a service is offered by a single dedicated computer.

The dramatic expansion of the Internet proved the traditional centralized ar-
chitecture inadequate for a number of services in the large scale. As a result,
considerable effort has been made in the area ofdistributed systems. The idea
was to abolish centralization by distributing a service across multiple cooperating

4 INTRODUCTION CHAP. 1

servers. Such a distribution can offer a multitude of benefits, including faulttoler-
ance, increased aggregate capacity, geographic distribution, etc. However, clients
remain passive entities, using the service collectively offered by the servers.

In the more recent years, advances in network speed and successive leaps
in computing power and storage capacity, in combination with the vast number
of networked low-end computers, resulted in considerable amounts of resources
accumulating in the end-nodes. This has naturally created incentives to harness the
power of such a huge pool of resources. Consequently, end-nodes were promoted
from passive entities to active components in massively distributed environments.
This goes well beyond the—once exclusive—paradigm of end-nodes passively
using services, described above. In this new model, known as thepeer-to-peer
(abbreviatedP2P) model, nodes do not only passivelyconsumeresources, but
they alsoparticipate, interact, andcontributeto the services they make use of.
Instead of nodes being divided in servers and clients, in P2P systems nodes are
equal peers collaborating to collectively carry out a service.

The P2P model of communication poses a number of challenging issues. Most
important is the unprecedented scale of P2P systems. The size of decentralized
systems has grown from large to massive, in certain cases involving millions of
nodes spread all around the globe. And with massive scale comes massiveinsta-
bility, due to the highly dynamic nature of systems of that size. Typically, nodes
in P2P systems provide no guarantees regarding their participation patterns.In-
stead, they join and leave at any time at will, let alone unpredictable ungraceful
failures of nodes and links. Finally, nodes in P2P systems are generally heteroge-
neous with respect to their hardware architectures and software platforms, as well
as regarding their computational, memory, storage, and network resources.

The aforementioned issues place a critical burden on the administration and
management of such systems. Massive scale in combination with highly dynamic
environments render explicit control of such systems infeasible, or at least very
hard to implement. Centralized systems impose severe limitations in keeping track
of millions of nodes coming and going. Scale issues can be alleviated by means
of a more sophisticated architecture, such as a hierarchical structure. However,
this increases complexity and administration costs, and the system depends onthe
availability of certain key nodes. Solutions introducing redundancy by means of
replication exist, however they inflict additional complexity which is nontrivialat
such scale. On top of that, all these solutions (i.e., both centralized and hierarchi-
cal ones) require an educated guess of the expected system size in order to appro-
priately allocate adequate resources. Generally, trying to impose explicit control
on this class of systems and tracking them by traditional deterministic methods
becomes increasingly complex.

The increasing number of connected devices, and the proliferation of net-

SEC. 1.2 DESIREDSOLUTION 5

works, provide no indication of a slowdown in this tendency. Quite on the con-
trary, we anticipate new, unimaginable, large-scale distributed applications toemerge.
In our research we step away from the deterministic and explicit control ofmassive-
scale systems. In contrast, we explore methods that enable the autonomous man-
agement of such systems by means of self-organization.

The goal of this dissertation is to address such challenges in scale and admin-
istration, introduce new protocols, and explore their usage in a number of current
or future applications. It should be noted that our goal is not to change the In-
ternet communication model as a whole, as a significant number of applications
work well the way they are. We aim at providing alternative solutions to com-
munication models where traditional approaches are either too expensive,do not
scale well, require excessive administration, or simply are not applicable for.

1.1. DESIRED SOLUTION

The main question we are faced with ishow decentralized systems should be.
First, they should be self-configurable. That is, configuration and administration
of such systems should be simple. It should be done by means of high-levelcom-
mands, such as join this cluster or that application. They should be plug-and-play,
in a decentralized sense.

Ideally, large-scale decentralized systems should be self-organized. They should
adapt fast and reliably to changes. In fact, they should be flexible enough to
withstand continuous changes, in very dynamic environments. In the presence of
large-scale failures (such as network partitioning) they should be robust, and they
should demonstrate self-healing behavior.

Considering their anticipated size, decentralized systems should be highly
scalable. Even more, they should demonstrateelastic capacity. By elastic we
mean that the capacity of a system should be proportional to its size. This way,
the larger a system gets (and therefore the higher the demand), the more capacity it
has to serve that demand. On the other hand, when the system shrinks, thecapac-
ity decreases accordingly. Such networks can spontaneously adapt tounexpected
increase or decrease in demand.

Last, but not least, large-scale decentralized systems should be simple. In
systems scaling to million of nodes, things can easily get out of control.

6 INTRODUCTION CHAP. 1

1.2. WHY NOT DHTS?

A significant direction of recent research in P2P systems has been in designing
structured overlay networks for routing. Such systems are widely knownasDis-
tributed Hash Tables(DHTs). A number of DHT systems have been proposed to
date, most important representatives being Pastry [Rowstron and Druschel 2001a],
Tapestry [Zhao et al. 2001, 2004], Chord [Stoica et al. 2001], and CAN [Rat-
nasamy et al. 2001a]. Their common property is that they all form a structured
overlay connecting a large number of participating nodes, which is used to route
packets among them.

DHT systems assign each participating node an ID, and route messages to a
node based on that, rather than based on its IP address. Performance (in terms of
routing hops) is typically inferior compared to traditional IP routing, but this is not
the point. Their significance lies in the fact that they map ID keys to nodes, in a
way similar to traditional hash tables mapping numeric keys to table entries. This
function is crucial as a building block for numerous other applications, suchas dis-
tributed network storage (OceanStore [Kubiatowicz et al. 2000] and PAST [Row-
stron and Druschel 2001b]), distributed web caching, etc. These and other DHT
applications are based on the following observation. Any indexable set ofdata can
be appropriately mapped to the nodes of a DHT overlay and spread accordingly.
The data entry having a given ID is placed on the node with the closest ID to that.
Subsequently, given the ID of a data entry, the node hosting it can be easily located
through DHT-based ID routing.

Although DHTs have reached a substantial level of maturity, they do not form
a panacea for the P2P world. DHTs are excellent for ID-based routing, and, con-
sequently, for exact query matching. They generally excel as a P2P framework for
ID-centric operations. However, not all applications are ID-centric. For instance,
despite being just right for ID-based queries, DHTs are not appropriate queries
based on arbitrary predicates. Neither are they appropriate for building asemantic
overlay, that is, linking nodes that are semantically related.

In essence, DHTs formstructuredP2P topologies, where links are determined
by the IDs of participating nodes. Data is allocated to nodes according to their
IDs. Subsequently, this structure is exploited to efficiently perform ID-based op-
erations. In contrast, the protocols we explore in this dissertation formunstruc-
tured P2P topologies, in which links are placed: (a) uniformly at random, or (b)
based on data laying on nodes. The main difference between DHTs and thetype
of overlays we build in this dissertation can be synopsized in the following phrase:

DHTs place data after the topology. Our protocols build the topology after data.

SEC. 1.3 THE GOSSIPINGMODEL OF COMMUNICATION 7

1.3. THE GOSSIPING MODEL OF COMMUNICATION

In this dissertation we exploregossiping protocolsfor building and managing
P2P overlays. Gossiping is a major representative of fully decentralized,self-
organizing systems. Let us take a look at what gossiping protocols are, and how
we use them for overlay construction.

1.3.1. Traditional Gossiping

Gossiping—also known asepidemic—protocols, were first introduced by Demers
et al. [Demers et al. 1987] in 1987. Demers et al. employed them in propagat-
ing updates in loosely replicated databases to maintain mutual consistency among
the replicas. Ever since they have been used for information dissemination [Bir-
man et al. 1999; Kermarrec et al. 2003; Eugster et al. 2004], for disseminating
group membership to the whole group [Golding and Taylor 1992], for failure de-
tection [van Renesse et al. 1998], for garbage collection [Guo et al. 1997], for ag-
gregation [Kempe et al. 2003; Jelasity et al. 2004b, 2005; Montresor et al. 2004],
for bootstrapping networks [Voulgaris and van Steen 2003; Jelasity et al. 2006]
and for load balancing [Jelasity et al. 2004c]. Generally, gossiping protocols have
been associated mostly with dissemination of information.

Omitting specific details, gossiping protocols operate based on the following
simple basic model. Each node has a complete view of the network, and period-
ically picks a random node from the whole network to exchange data with. This
permits information known by anyonenode to spread to the whole network with
very high probability.

1.3.2. Gossip-based Topology Construction

Maintaining complete membership tables on each node is infeasible for large-
scale, highly dynamic networks. Such an effort would impose tremendous syn-
chronization problems, especially since some studies of P2P systems measured
that a large percentage of nodes join for a few minutes or up to an hour (see [Bhag-
wan et al. 2003; Saroiu et al. 2003; Sen and Wang 2004]).

In our work we deviate from the traditional gossiping model in two respects.
First, we drop the assumption of complete knowledge of the network. Each node
maintains only links to a very small number ofneighbors, constituting itspartial
viewof the network (e.g., only a couple of dozen nodes in networks in the orderof
millions). When gossiping, a node picks a random neighbor from its partial view
to exchange data with.

Second, the type of data exchanged between nodes is neighbors from their par-
tial views. That is, nodes exchange membership information itself. After a gossip

8 INTRODUCTION CHAP. 1

exchange nodes update their partial views to incorporate (part of) the received
links, if needed. We are, effectively, dealing with membership management.

By exchanging links and continuously refreshing their partial views, nodes
can self-organize into topologies that better suit certain applications. In particu-
lar, depending on the target application our protocols exchange links in two main
manners:

Randomly Exchanging links at random leads to randomized overlays. That is,
the partial view of each node consists of links to randomly selected neigh-
bors. Note that selecting a random node from a randomized partial view is
essentially equivalent to selecting a random node out of the whole network,
which is the assumption made by traditional gossiping protocols. In other
words, randomized overlays can serve as a substrate that allows the opera-
tion of traditional gossiping protocols in very large and dynamic networks,
bypassing the need for full knowledge of the network. In addition, random-
ized overlays demonstrate remarkable robustness with respect to large-scale
failures, and highly dynamic conditions with nodes joining and leaving fre-
quently. As we will see, they are ideal for keeping large sets of nodes in a
single connected overlay.

Methodically By exchanging links based on certain criteria, nodes can self-organize
in structured overlays. A multitude of P2P applications can be served by
forming the appropriate structures. As we will see, the framework for form-
ing structured overlays is very simple and generic.

1.4. WHY GOSSIPING?

An interesting question iswhat drove us in pursuing desirable solutions in the
domain of gossiping protocols. Let us motivate our decision by presenting a brief
list of the main advantages of gossiping protocols.

Scalability Gossiping protocols are inherently scalable. This scalability stems
from the fact that each node performs a fixed set of operations, at a fixed
rate, irrespectively of the network size. With respect to the load per node,
gossiping protocols are, therefore, virtually infinitely scalable.

Fault-tolerance and RobustnessAs we will see in this dissertation, appropri-
ately designed gossiping protocols turn out to be extremely robust with re-
spect to large-scale failures and node churn. Fault-tolerance is achieved by
means of redundancy, and this proves to be very robust.

SEC. 1.5 RESEARCHMETHODOLOGY 9

Symmetry Gossiping protocols form symmetric overlays. That is, nodes are
roughly equal, with no node playing a specific, critical role. As a conse-
quence, no single node failure can have a significant effect on the correct
operation and state of a gossiping protocol.

Graceful degradation Although individual node failures generally do not dis-
turb the operation of a gossip-based system, large numbers of failures can
naturally affect it. However, as we shall see throughout this dissertation,
performance, functionality, and reliability of gossip-based systems do not
drop rapidly as the number of failures increases.

Adaptability Gossiping protocols appear to form overlays that are highly adapt-
able to network changes and dynamic environments. We will repeatedly see
this throughout this dissertation.

Elasticity Although it is generally feasible to support large-scale services by
means of one or more dedicated servers, the appropriate resources have to
be provisioned for certain load levels in advance. When the load exceeds
a certain threshold, such systems fail to fulfil their duties. When the load
is lower, dedicated servers are underutilized, their resources being wasted.
This issue becomes of higher concern for systems with unpredictable load
or high load fluctuation. In contrast, gossip-based—and generally P2P—
systems do not face this problem, as their resources are inherently propor-
tional to the system load. Since peers useand contribute resources at the
same time, both load and resources grow aside, proportionally to the num-
ber of participating peers. We say that P2P systems are inherentlyelastic
with respect to load.

An additional, important advantage of gossiping protocols is theirsimplicity.
Simplicity is an essential advantage for systems of massive scale, which tend to
be inherently complex. The interesting combination between simplicity and the
remarkable properties of gossiping algorithms, motivated us in exploring themfor
building self-organizing systems.

1.5. RESEARCH METHODOLOGY

The research laid out in this dissertation is validated experimentally. Gossip-
ing protocols generally exhibit chaotic behavior that is too complex to be formally
analyzed. Theoretical analysis of our protocols has been out of the scope of this
dissertation.

10 INTRODUCTION CHAP. 1

Our experiments were carried out in the following two ways: simulation and/or
emulation. For the former, we simulated up to 100K peers in PeerSim, an event-
driven simulator running on a single physical machine [PeerSim]. For emulated
experiments we implemented the respective protocols or applications, and de-
ployed them on the DAS-2 wide-area cluster, consisting of 200 physical ma-
chines [DAS-2]. By mapping a number of peers on each physical host, we were
able to emulate up to 65K peers. Although the majority of the experiments were
carried out by simulation, our emulations provide strong evidence that whatwe
see in simulations constitutes a very accurate prediction of protocol behavior in
realistic systems.

1.6. OUTLINE AND CONTRIBUTIONS

This dissertation is split in two parts. PartI presents the gossiping protocols
we have developed. PartII lays out a number of applications making use of these
protocols. Let us now list the chapters that constitute this thesis, along with a short
description of the thesis contributions per chapter.

PART I

Chapter 2 — Building Random Overlays: CYCLON Chapter2 introduces CY-
CLON, a gossiping protocol for inexpensive membership management in
very large P2P overlays. CYCLON constitutes a fundamental protocol serv-
ing a number of applications presented in subsequent chapters. It is highly
scalable, very robust, and completely decentralized. Most important is that
the resulting communication graphs share important properties with random
graphs.

Chapter 3 — Random Overlays: Exploring the Design SpaceChapter3expands
on our study of gossiping protocols that form randomized overlays by ex-
tending the gossiping framework introduced in [Jelasity et al. 2004a] and
exploring the design space. CYCLON constitutes a specific instance in this
framework. This chapter aims at providing an insight into the factors that
affect certain aspects of the behavior of gossiping protocols.

Chapter 4 — From Randomness to Structure: VICINITY In Chapter4we take
a shift and investigate how gossiping and random overlays can be harnessed
to create structure. We present the VICINITY protocol, which, in conjunc-
tion with CYCLON builds arbitrary topologies. VICINITY is a completely
decentralized protocol, and nodes self-organize to form the desired struc-
ture.

SEC. 1.6 OUTLINE AND CONTRIBUTIONS 11

PART II

Chapter 5 — Routing Table Management: Building Pastry Chapter5presents
our first attempt to devise structure from randomness. It presents how a
gossiping protocol that builds randomized overlays can be used to build
the routing tables of the Pastry DHT [Rowstron and Druschel 2001a]. This
work has preceded the VICINITY protocol, which is more powerful in build-
ing and maintaining topologies. Nevertheless, this research deserves a place
in this dissertation, as an illustration of our first step in harnessing random-
ness to create structure.

Chapter 6 — Information Dissemination Chapter6 presents a protocol for in-
formation dissemination, that combines gossip-based probabilistic dissemi-
nation (through CYCLON) with deterministic dissemination (through VICIN-
ITY). In fail-free and static environments our protocol guarantees dissem-
ination to every single node. In the presence of failures or node churn,its
performance degrades gracefully, however still managing to deliver mes-
sages to a large proportion of the network.

Chapter 7 — Semantic Overlay Networks Chapter7presents how the CYCLON

and VICINITY protocols can be used to significantly enhance content-based
searching. This is done by establishing links among semantically related
nodes, that is, among nodes of similar content. In essence, the links estab-
lished form a semantic overlay network.

Chapter 8 — SUB-2-SUB: Purely P2P Publish/SubscribeChapter8presents SUB-
2-SUB, a fully decentralized, collaborative, content-based publish/subscribe
system. SUB-2-SUB is a self-organizing system based on the CYCLON and
V ICINITY protocols.

Finally, Chapter9 summarizes our most significant observations and conclu-
sions, and discusses future directions for the research presented throughout this
dissertation.

12 INTRODUCTION CHAP. 1

CHAPTER 2

Building Random Overlays:
CYCLON

The unprecedented growth of the Internet in size and speed has triggered the con-
ception of massive scale applications involving a very large number of nodes in the
order of thousands or millions. The client-server model of communication is often
not adequate for applications of such scale. This has encouraged the emergence
of an alternative communication model, namelypeer-to-peer(P2P) systems. The
main philosophy behind these systems is communal collaboration among peers:
sharing both duties and benefits. By distributing responsibilities across all par-
ticipating peers, they can collectively carry out large-scale tasks in a simpleand
generally scalable way, that would otherwise depend on expensive, dedicated, and
hard to administer centralized servers.

A distinguishing feature of P2P systems is that the peers jointly maintain an
overlay network. Unlike traditional layer-3 networks, the structure of these over-
lay networks is not dictated by the (often fairly static) physical presence and con-
nectivity of hosts, but bylogical relationshipsbetween peers. In particular, P2P
overlay networks are generally required to handle a much higher rate concerning
the joining and leaving of nodes, while at the same time they assume that member-
ship behavior is roughly the same for all nodes. In other words, they aredesigned
to handle highly dynamic, symmetric networks. Overlay management is therefore
a key issue in designing P2P systems.

There are currently two main categories of P2P systems in terms of overlay
management. Structured P2P systems impose a specific linkage structure between
nodes. Distributed Hash Tables [Balakrishnan et al. 2003] are typical examples in
this category. They link peers based on their IDs in a way to enable efficient ID-
based routing among them. In contrast, in unstructured P2P systems peers are not
linked according to a predefined deterministic scheme. Instead, links are created

14 BUILDING RANDOM OVERLAYS: CYCLON CHAP. 2

either randomly (as is typically done in Gnutella), or are probabilistically basedon
some proximity metric between nodes (i.e., semantic proximity, leading to what
are known as semantic overlay networks). Unstructured P2P systems areprimarily
designed to support rapid information dissemination and content-based searching
in highly dynamic distributed environments, but their utility extends beyond these
applications.

In this chapter we concentrate on gossip-based unstructured P2P overlays. In
such systems nodes self-organize in unstructured overlays by gossiping to each
other to discover new links. Two key issues govern these systems. First, defin-
ing the gossiping protocol specifics that result in overlays with certain desirable
properties. Second, ensuring that these properties are maintained or are swiftly re-
coverable in the event of major disasters or enduring highly dynamic conditions,
a property often referred to asself-healing. Above all, these requirements should
be met without maintaining any global information or requiring any sort of central
administration.

It has been observed that a number of overlays appearing in social, ecologi-
cal, neural, science collaboration, and phone call networks, as well asthe World
Wide Web itself, exhibit properties of small-world and scale-free networks[Albert
and Barab́asi 2002; Newman 2002]. Certain types of small-world networks are
very appealing, notably when decentralized search is at stake [Kleinberg 2000a,
b, 2001, 2004]. However, in many cases it is better to construct overlays that are
close to random graphs [Bollobas 2001]. More specifically, random graphs ex-
hibit higher robustness to large-scale failures than small-world networks,while
they distribute the load evenly across all nodes in the system. In this chapter we
introduce CYCLON, a gossiping protocol that organizes nodes in overlays similar
to random graphs.

Gossip-based unstructured overlays can be used as a building block in avari-
ety of network management applications, especially when highly dynamic envi-
ronments are anticipated. A good example is self-monitoring in large-scale net-
works, where each node is charged with monitoring a few random others,sharing
the monitoring cost. An appropriately chosen overlay management algorithm can
ensure load fairness, and can guarantee that no node is left unattended, resulting
in a robust self-monitoring system. Another example is our work on managing
routing tables in very large P2P networks [Voulgaris and van Steen 2003], pre-
sented in Chapter5 in this dissertation. Stavrou et al. suggest management of
flash crowd crises by disseminating information over gossip-based unstructured
overlays [Stavrou et al. 2004]. In Chapter4 we build on top of the research pre-
sented in this chapter to provide a framework that organizes nodes in desirable
structured topologies. That framework is further utilized in a number of applica-
tions illustrated in PartII of this dissertation.

SEC. 2.1 THE PROTOCOL 15

The problem we address is that of building and maintaining overlays with
properties suitable for diverse applications like the aforementioned ones.More
specifically, we are looking into inexpensively building and maintaining very large,
connected overlay networks that exhibit important properties of randomgraphs.
These properties should be maintained even in highly dynamic environments. In
essence, we are interested in inexpensive membership management, in the sense
that any disruption of the overlay’s properties resulting from joining or leaving
nodes should be quickly and efficiently corrected. We assume that nodesmaintain
a small, partial view of the entire network. Our starting point is the view exchange
protocol described in [Stavrou et al. 2004]. That protocol ensures that connectivity
of the overlay is maintained as long as membership does not change.

We make two contributions. First, we provide an experimental analysis of the
basic swapping protocol for large networks, examining properties suchas clus-
tering and node degree distribution. These experiments have not been conducted
before, and, in particular, not on large networks. We demonstrate that swapping
neighbors is indeed a promising exchange protocol.

Second, and most importantly, we describe CYCLON1, a complete framework
for inexpensive membership management. CYCLON introduces an enhanced ver-
sion of swapping, which results in node-degree distributions that exhibit better
properties than those found in overlays resulting from basic swapping, or even in
random graphs. Moreover, it includes better, in terms of efficiency andquality,
management of node additions and removals, which allows us to establish truly
inexpensive membership management that does not disrupt the randomness of the
overlay network.

2.1. THE PROTOCOL

CYCLON is based on theswappingoperation, by which two nodes gossiping
with each otherswapsome randomly chosen links of theirs. The main intuition
behind this operation is to mix links, resulting in overlays resembling random
graphs. The experimental analysis following in Section2.2confirms this intuition.

2.1.1. Basic Swapping

The basic swapping algorithm, introduced in [Stavrou et al. 2004], is a simple
peer-to-peer communication model. It forms an overlay and keeps it connected
by means of an epidemic algorithm. The protocol is extremely simple: each peer

1The name CYCLON was inspired by the protocol’s power in mixing nodes in the network, sort
of like a tornado. It is also inspired by the Greek origin of the word,kyklos(=circle), due to the
uniformity it imposes on the overlay.

16 BUILDING RANDOM OVERLAYS: CYCLON CHAP. 2

knows a small, continuously changing set of other peers, called itsneighbors, and
occasionally contacts a random one of them to exchange some of their neighbors.

More formally, knowledge regarding neighbors is stored and exchanged by
means ofnode descriptors. A node descriptor referring to peerP containsP’s
contact information, (i.e., network address and port). Each peer maintainsa small,
fixed number ofℓ node descriptors, which constitute itsviewof the network. Typ-
ical values forℓ are 20, 50, or 100. When the view of peerP contains a descriptor
of peerQ, we say thatQ is a neighbor ofP, or thatP has alink (or pointer) to Q.
These expressions will be used interchangeably.

Each peerP repeatedly initiates a gossip exchange (also referred to as view
exchange), known asswapping, by executing the following six steps:

1. Select a random subset ofg neighbors (1≤ g≤ ℓ) from P’s own view, and
a random peer,Q, within this subset, whereg is a system parameter, called
gossip length.

2. Replace the descriptor ofQ with that ofP.

3. Send the updated subset to peerQ.

4. Receive fromQ a subset of no more thang of Q’s descriptors.

5. Discard descriptors ofP (if any), and descriptors that are already inP’s
view.

6. UpdateP’s view to includeall remaining descriptors, byfirstly using empty
view slots (if any),secondlyreplacing the descriptor ofQ, andfinally re-
place descriptors among the ones sent toQ.

Upon reception of a gossip request, peerQ randomly selects a subset of its
own neighbors, of size no more thang, sends it to the initiating node, and executes
steps 5 and 6 to update its own view accordingly.

Figure2.1presents a schematic example of the basic swapping operation.

2.1.2. Enhanced Swapping

CYCLON employs an enhanced version of swapping, that, as we shall show in sub-
sequent sections, among other things improves the quality of the overlay in terms
of randomness. Enhanced swapping follows the same model as basic swapping.
The key difference is that nodes do notrandomlychoose which neighbor to swap
views with. Instead, they select the neighbor whose information was the earliest
one to have been injected in the network.

SEC. 2.1 THE PROTOCOL 17

92

0
3

5

7

6

1 4

92

0
3

5

7

6

1 4

2→ 9 : {2,0,6}
(a) Before swapping 2← 9 : {0,5,7} (b) After swapping

Figure 2.1: An example of swapping between nodes 2 and 9. Note that, among
other changes, the link between 2 and 9 reverses direction.

The first motivation behind this enhancement is to limit the time a node de-
scriptor can be passed around until it is chosen by some node for a view exchange.
As we shall see in Section2.4, this results in a more up-to-date overlay at any given
moment, as it prevents links to dead nodes from lingering around indefinitely.

The second—and far less obvious—motivation is to impose a predictable life-
time on each descriptor, in order to control the number of existing links to a given
node at any time. In Section2.2.3we will show that as a consequence of that,
pointers are distributed in a remarkably even way across all nodes.

To accommodate the aforementioned issues, node descriptors in CYCLON

contain an extra field calleddescriptor age, or simplyage. That is, a CYCLON

node descriptor referring to nodeP is a tuple containing the following two fields:

1. P’s contact information (i.e., network address and port)

2. A numericagefield

The age field denotes roughly the age of the descriptor expressed in∆T intervals
since the moment it was created by the node it points at. We emphasize that it is
an indication of the lifetime of a particular descriptor, not the lifetime of the node
itself.

In enhanced swapping nodes initiate neighbor exchanges periodically, yet not
synchronized, at a fixed period∆T. The enhanced swapping operation is per-
formed by letting the initiating peerP execute the following seven steps:

1. Increase by one the age of all descriptors.

18 BUILDING RANDOM OVERLAYS: CYCLON CHAP. 2

2. Select neighborQ with the highest age among all neighbors, andg−1 other
random neighbors.

3. Replace the descriptor ofQ with that ofP (with age 0).

4. Send the updated subset to peerQ.

5. Receive fromQ a subset of no more thatg of its own neighbors.

6. Discard descriptors ofP (if any), and descriptors that are already inP’s
view.

7. UpdateP’s view to includeall remaining descriptors, byfirstly using empty
view slots (if any),secondlyreplacing the descriptor ofQ, andfinally re-
place descriptors among the ones sent toQ.

Like in basic swapping, the receiving nodeQ replies by sending back a random
subset of at mostg of its neighbors, and updates its own view to accommodate all
received ones. It does not increase, though, any descriptor’s age until its own turn
comes to initiate a gossip exchange.

Note that after nodeP has initiated a gossip operation with its neighborQ, P
becomesQ’s neighbor, whileQ is no longer a neighbor ofP. That is, the neighbor
relation betweenP andQ reverses direction. As a consequence, the indegree ofP
increases by one, while the indegree ofQ decreases by one.

Figure2.2 shows the pseudocode of a generic gossiping skeleton modeling
CYCLON. The functions appearing in boldface, namelyselectPeer(), se-
lectToSend(), andselectToKeep(), form the threehooksof this skele-
ton. Different protocols can be instantiated from this skeleton by implementing
specific policies for these three functions, in turn, leading to different emergent
behaviors. The policies implemented by CYCLON are presented in Figure2.3.

As a final note, given the asynchronous nature of the protocol, the gossiping
procedure of a node may be interrupted by a swap request by another node. No
measures are taken to explicitly control concurrency issues. Practice showed that
occasional intervening swaps do not alter the macroscopic behavior of the system
(see Section3.6).

From now on, any references toswappingapply tobothbasic and enhanced
swapping. Otherwise, the swap type will be explicitly specified.

2.2. BASIC PROPERTIES

As it turns out, swapping has some desirable statistical properties. In order
to observe the characteristics of the overlay, we need to consider the connectivity

SEC. 2.2 BASIC PROPERTIES 19

do forever
{
wait(T time units)
incr. all descriptors’ age by 1
Q ← selectPeer()
remove Q from view
buf_send ← selectToSend()
send buf_send to Q
receive buf_recv from Q
view ← selectToKeep()

}

do forever
{
receive buf_recv from Q
buf_send ← selectToSend()
send buf_send to Q
view ← selectToKeep()

}

Active thread Passive thread

Figure 2.2: The generic gossiping skeleton for CYCLON.

Hook Action taken
selectPeer() Select descriptor with the oldest age
selectToSend()

active thread Selectg−1 random descriptors.
Add own descriptor with own profile and age 0.

passive thread Selectg random descriptors.

selectToKeep()
active thread Keep allg received descriptors, replacing (if needed) the

descriptor selected byselectPeer() and then theg−
1 ones selected byselectToSend().

passive thread Keep allg received descriptors, replacing (if needed) the
g ones selected byselectToSend().

In case of multiple descriptors from the same node, keep
the one with the lowest age.

Figure 2.3: Implementation of the generic gossiping skeleton hooks, for the CY-
CLON protocol.

20 BUILDING RANDOM OVERLAYS: CYCLON CHAP. 2

graph, that is, the graph having the peers as vertices, and the links between them
as (directed) edges. In this section we consider—unless otherwise stated—the
undirected version of the connectivity graph, which is taken by simply dropping
the direction of the edges. The motivation behind this is that we are interested
rather in the “can-communicate” than the “knows-about” version of the graph. A
node has the same potential to communicate with another node either if the first is
a neighbor of the second or vice versa.

In this section we show and experimentally analyze the basic properties of
the basic and enhanced swapping protocols. All experiments presented here have
been carried out with an event-driven simulator we developed in C++.

2.2.1. Connectivity

The fundamental property of swapping is that, given a fail-free environment, con-
nectivity of the overlay is guaranteed.

Considering the trivial case ofindividual nodes’ connectivity, it should be
clear that no node becomes disconnected as a result of a swap operation. It simply
moves from being the neighbor of one node to being the neighbor of another. This
provides an intuitive indication that connectivity is generally preserved.

To provide a complete proof, we now show that an overlay cannot be splitin
two disjoint subsets as a result of a swap operation. Assume two subsetsA and
B connected by at least one link. For instance, some node inA has a pointer to
some node inB. Swaps within subsetA may pass this pointer around, but it will
always point at the same node inB, keeping the two subsets connected. Swaps
within subsetB do not interfere with this link. Finally, a swap between the node
in A currently holding the pointer, and the node inB being pointed at, will simply
reverse the direction of the pointer, thus maintaining the link between the two
subsets. Therefore, no swap operation can result inA andB (or generally any two
subsets of the overlay) becoming disconnected.

2.2.2. Convergence

In this section we study the convergence of specific statistical properties of CY-
CLON, namely the shortest path length, and the clustering coefficient, outlined
below.

Theshortest path lengthbetween nodesP andQ is the minimum number of
edges needed to traverse to reachQ from P. Theaverage path lengthis the average
of the shortest path lengths between any two nodes. The average path length is a
metric of the number of hops (and hence, communication costs and time) to reach
nodes from a given source. A small average path length is therefore essential for
broadcasting or, generally, information dissemination applications.

SEC. 2.2 BASIC PROPERTIES 21

Theclustering coefficientof a node is defined as the ratio of the existing links
among the node’s neighbors over the total number of possible links among them.
It basically shows to what percentage the neighbors of a node are also neighbors
among themselves. Theaverage clustering coefficientis the clustering coefficient
averaged across all nodes in the network. It is generally undesirable for an overlay
to have a high average clustering coefficient for two reasons. First, it weakens
the connectivity of a cluster to the rest of the network, therefore increasing the
chances of partitioning. Second, it is not optimal for information dissemination
applications due to the high number of redundant message deliveries within highly
clustered node communities.

To study the emergent behavior of CYCLON, we define acycleto be the time
period during which a number of gossip exchanges equal to the number ofnodes
have been made. Since nodes initiate gossip exchanges periodically, at thesame
rate, a cycle coincides with the gossip period∆T. Note that during a cycle, each
node has initiated a gossip exchange exactly once. We studied the protocol’s
emergent behavior by observing the aforementioned statistical propertiesat times
0, ∆T, 2∆T, etc.

Note that the selection of the period∆T effectively regulates the speed at
which an experiment runs in real time. However, it does not affect the proto-
col’s emergent behavior or its convergence speed with respect to the number of
cycles elapsed. Nevertheless,∆T should not be comparably short to twice the typ-
ical latencies in the underlying network, as network delays would unpredictably
affect the order in which events are taking place. Typical values of∆T = 10secor
higher are recommended for experiments running over a wide-area network.

We conducted a series of experiments involving networks containing up to
100,000 nodes. In fact, we initialized our experiments in various differentways,
including random, star, lattice, and gradually growing topologies. We observed
that the statistical properties of the emerging overlay always converged tothe exact
same values, irrespectively of the bootstrapping method employed each time. The
experiments presented in this section (Fig.2.4) were intentionally bootstrapped
with the worst imaginable setting. Nodes were set to form a “chain”, each node
having a single neighbor, namely its previous one. For instance, the average path
length was initially the longest possible: 99,999 hops were needed to reach the
first from the last node.

Figure2.4(a) demonstrates a significant aspect of the emergent behavior of
swapping. It clearly shows that the average path length converges to a very small
value, which coincides with the average path length of a random graph with the
same number of edges.

Figure2.4(b) shows that swapping exhibits convergent behavior for the clus-
tering coefficient. In our experiments, the clustering coefficient alwaysconverged

22 BUILDING RANDOM OVERLAYS: CYCLON CHAP. 2

100

101

102

103

104

105

 0 20 40 60 80 100 120 140av
er

ag
e

pa
th

 le
ng

th
 fr

om
 fi

xe
d

no
de

 (
lo

g)

cycles

=20
=50

rand. graph =20
rand. graph =50ℓ

ℓ
ℓ
ℓ

10-4

10-3

10-2

10-1

100

 0 20 40 60 80 100 120 140

cl
us

te
rin

g
co

ef
fic

ie
nt

 (
lo

g)
cycles

=20
=50

rand. graph =20
rand. graph =50ℓ

ℓ
ℓ
ℓ

(a) (b)

Figure 2.4: (a) Average shortest path length between two nodes for different view
lengths. (b) Average clustering coefficient taken over all nodes.

to values practically equal to the clustering coefficient of random graphs. More-
over, both the average path length and the clustering coefficient converge almost
exponentially (linearly in the log-linear graph).

Note that these experiments ran for several thousand cycles. However, only
the initial cycles are depicted, as the values remained stable for all subsequent
cycles, indicating convergent behavior.

Figure2.5shows the converged values for the average path length and the av-
erage clustering coefficient, for overlays of different numbers of nodes and view
lengths. Two initial observations can be made. First, the average path length
increases logarithmically as a function of the number of nodes in the overlay.Sec-
ond, the clustering coefficient drops exponentially (linearly in the log-log graph)
as a function of the number of nodes.

What is more interesting is that both the average path length and the clustering
coefficient converge to the exact values expected in a random graph of the same
number of nodes and links. A random graph is a graph where an edge between two
random nodes exists with a probabilityp. Consequently,p is equal to the ratio of
existing links among nodes, over the total number of node pairs (total numberof
possiblelinks). Also, in random graphs, the average clustering coefficient,Crand,
is equal top. Therefore, it follows that

Crand = p =
#links

total # of possible links
=

#links
N×(N−1)

2

(2.1)

whereN is the number of nodes. For the sake of comparison, we consider random
graphs with an equal number of links as in our graphs. In our overlay, the number

SEC. 2.2 BASIC PROPERTIES 23

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 100000 50000 20000 10000 5000 2000 1000

av
er

ag
e

pa
th

 le
ng

th
 (

lin
ea

r)

number of nodes (log)

=10
=20
=50

=100ℓ
ℓ
ℓ
ℓ

10-4

10-3

10-2

10-1

100

 100000 50000 20000 10000 5000 2000 1000

cl
us

te
rin

g
co

ef
fic

ie
nt

 (
lo

g)
number of nodes (log)

(a) (b)

Figure 2.5: Converged state of CYCLON. (a) Average shortest path length between
two nodes. (b) Average clustering coefficient taken over all nodes.

of links isN× ℓ, whereℓ is the view length. By substituting that in2.1, we get:

Crand =
2× ℓ

N−1
(2.2)

One can observe that formula2.2, which gives the clustering coefficient for
random graphs of the same number of nodes and edges as ours, also provides
the exact values retrieved through experimentation in2.5(b). This proves that the
overlays formed by swapping have the same clustering coefficient as equivalent
random graphs.

2.2.3. Degree Distribution

Thedegreeof a node is the number of links it has to other nodes, in the undirected
connection graph. The interest in the degree distribution stems from three reasons.
First, the degree distribution is highly related to the robustness of the overlay
in the presence of failures as it shows the existence of weakly connectednodes
and massively connected hubs. Second, it is an indication of the way epidemics
are spread. Third, it provides an indication of how fairly links are distributed
among nodes, and, as a consequence, an indication of the distribution of resource
usage (processing, bandwidth) across nodes. For the sake of robustness, efficient
information dissemination, and load balancing, it is desirable to have a balanced,
uniform distribution of links across all nodes of the overlay. In other words, it is
desirable to have a degree distribution with low standard deviation.

In the directed version of the connection graph, we distinguish between the
outdegree, and theindegreeof a node, which are the number of edges leaving

24 BUILDING RANDOM OVERLAYS: CYCLON CHAP. 2

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 5 10 15 20 25 30 35 40

nu
m

be
r

of
 n

od
es

indegree

basic swapping, =20
enhanced swapping, =20

reg.rand., =20ℓ
ℓ
ℓ

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 20 40 60 80 100

nu
m

be
r

of
 n

od
es

indegree

basic swapping, =50
enhanced swapping, =50

reg.rand., =50ℓ
ℓ
ℓ

(a) (b)

Figure 2.6: Indegree distribution in converged 100,000 node overlay, for basic
swapping, enhanced swapping, and an overlay where each node hasℓ randomly
chosen outgoing links. (a) View lengthℓ = 20. (b) View lengthℓ = 50.

from and ending at the node respectively. In our case, the outdegreeof every node
is fixed, and equal to the view length. Therefore, we concentrate on observing the
indegree distributionof our overlays.

Figure2.6shows the indegree distribution for both basic and enhanced swap-
ping for two different view lengths. The indegree distribution of an overlay with
ℓ randomly chosen outgoing links per node is shown as well for comparison.In
both protocols, the indegree distributions demonstrate a peak at the indegree equal
to the view length, while the number of nodes having larger or smaller indegrees
drops symmetrically according to the shift from the view length.

It is, however, clear that enhanced swapping does a significantly betterjob
with respect to spreading out the links extremely evenly across all nodes.For the
experiment with view length 20, 80.31% of the nodes have an indegree of 20±5%.
For the experiment with view length 50, 93.95% of the nodes have an indegree of
50±5%. The respective percentages for basic swapping are 36.22% and 38.47%.

To understand CYCLON’s enhancement with respect to the indegree distribu-
tion, we should take a closer look at the life cycle of pointers. A pointer to node
P is bornwhenP initiates a swap with one of its neighbors, sayQ. In the absence
of failures this pointer will remain in the network, possibly hopping from nodeto
node as a result of subsequent swaps. It willdie only when it is selected by the
node currently holding it, sayR, to perform a swap withP, in which case it will
be replaced by a fresh pointer fromP to R.

In both basic and enhanced swapping exactlyonenew pointer to each node is
born in each cycle, since each node initiates exactly one swap operation. However,

SEC. 2.2 BASIC PROPERTIES 25

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10 12 14 16 18 20

cy
cl

es
 to

 c
on

ve
rg

e

swap length

chain, enhanced swapping, =20
star, enhanced swapping, =20ℓ

ℓ

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30 35 40 45 50

cy
cl

es
 to

 c
on

ve
rg

e
swap length

chain, enhanced swapping, =50
star, enhanced swapping, =50ℓ

ℓ

Figure 2.7: Effect of gossip length on convergence speed.N=100,000.

the two protocols differ in thedeath rateof pointers.
In basic swapping, any number of existing pointers to a given node can diein

a single cycle, as they are selected for swappingat random. As the death rate does
not follow the birth rate closely, the distribution of thepopulationof pointers to
individual nodes has a high standard deviation, resulting in the wide distribution
of Figure2.6.

In enhanced swapping, in each cycle a nodeP is contacted by one other node
on average to do swapping, thus inserting one new pointer of age 0 in its view, and
pushing out of its view the pointer of maximum age. In the subsequent cycle,that
pointer of age 0 is upgraded to age 1, and a new pointer with age 0 replacesthe
currently oldest pointer. As a result, a node’s view contains on averageone pointer
of each age, from 0 toℓ−1. This means that replaced pointers are typically of age
aroundℓ−1. In other words, a pointer has a lifetime of aboutℓ cycles. Taking this
observation one step further, in each cycleonepointer to a given node will die,
the one injected by that nodeℓ cycles ago. So, the death rate of pointers to a given
node is very close to one per cycle, that is, very close to the birth rate, keeping
the population of pointers to that node almost static. This intuitive result can be
clearly seen in the distributions of Figure2.6.

2.2.4. Dependency on Gossip Length

We conducted a series of experiments to examine the effect of the gossip length
on convergence. Interestingly, for all overlays we tried, the converged state with
respect to the average path length, average clustering coefficient, andindegree
distribution, proved to beindependentof the gossip length used. The only effect
of the gossip length was in the number of cycles it took to reach the converged
state.

26 BUILDING RANDOM OVERLAYS: CYCLON CHAP. 2

We used the indegree distribution as a metric to identify at which cycle an
overlay converges. As the indegree distribution does not converge toexactnum-
bers, but to a certain graph shape whose points keep slightly fluctuating, we had
to use an approximation algorithm to identify the convergence point. In particular,
we recorded the indegree distributions for the first 1000 cycles of eachexperiment.
In all cases, by looking at the distribution series we could tell that they werecer-
tainly converged well before the 900th cycle. We computed the average indegree
distribution of the last hundred cycles, namely cycles 900-999. Subsequently, for
each cyclei = 900. . .999 we calculated thesum of squared errors Ei , between this
cycle’s indegree distribution and the average one. The sum of squarederrors for
cycle i is defined as follows:

Ei =
∞

∑
k=0

(xik−xk)

whereXi = {xi0,xi1,xi2, . . .} is thei-cycle distribution, andXi = {x0,x1,x2, . . .} is
the average distribution of cycles 900-999. We, then, figured out the maximum of
these values,

Emax= max{E900, . . . ,E999}

This was used as the maximum threshold of the sum of squared errors to consider a
distribution converged. Finally, starting from cycle 0, we checked one distribution
at a time to find the first cyclei whoseEi was below that threshold. This cycle was
logged as the cycle for which this experiment converged.

To demonstrate the gossip length’s effect independently of the initial condi-
tion, two different bootstrapping methods were used. The first one,chain, is the
one described in Section2.2.2: considering nodes in a line, each node has a single
link to its previous one, forming a chain topology. In the second bootstrapping
method,star, all nodes initially have a single neighbor, the same one for all of
them, essentially forming a star topology.

Figure2.7 presents the number of cycles an experiment took to converge as
a function of the gossip length, for 100,000 nodes, and view lengths 20 and 50.
In all cases, swapping just one neighbor at a time took clearly the longest. Swap-
ping two, three, or more neighbors, gradually sped up the process. However,
no significant improvement was noticed beyond gossip lengths of about eight or
ten. Counter intuitively, convergence speed degraded suddenly whenswapping
the whole view, or almost all of it. The reason behind slow convergence either
when swapping toofewor toomanyneighbors is that in either case views are not
mixed up too much by each swap operation. Therefore, a view is only minimally
(if at all) enriched with new links, even if it has moved as a whole to a new node
in the case of full view swapping.

SEC. 2.3 ADDING NODES 27

This result has more significance when bandwidth is an issue, since the gossip
length linearly affects the amount of bandwidth used by CYCLON. Choosing a
gossip length as low as around six or eight results in nearly optimal convergence
speed, while keeping bandwidth utilization to relatively low levels. We return to
this issue in Section2.6.

2.3. ADDING NODES

CYCLON introduces a new method for nodes to join the overlay efficiently,
without disrupting randomness. To join, a new node simply needs to know any
single node that is already part of the overlay, called itsintroducer. Such a node
can be discovered in various ways, including broadcasting in the local network,
making use of a designated multicast group, or even contacting a well-known
server, etc. Finding such an introducer is out of the scope of this chapter. Here,
we are interested in how to join once an introducer is known, without affecting the
basic properties of the system.

To this end, a key observation is that due to the randomness of the connec-
tivity graph, a random walk of length at least equal to the average path length is
guaranteed to end at arandomnode of the overlay, irrespectively of the starting
node.

Based on this observation, a new nodeP can join in a fairly straightforward
manner.P’s introducer initiatesℓ (view length) random walks, setting their TTL
(time to live) to a small value close to the expected average path length, such as
four or five. A nodeQ where a random walk ends, replaces one of its neighbors
with a new link toP. Q then forwards the replaced neighbor toP, who, in turn, has
to include it in its view. In effect, this operation is equivalent toP initiating a swap
of gossip length 1 with nodeQ. The join operation ends when allℓ random walks
have ended and the corresponding neighbor exchanges have been accomplished.

We claim that this join operation makes it impossible for an external observer
to distinguishP as being different from the rest of the nodes, or to discover any
randomness disruption in the overlay. First,P’s view is filled up withℓ randomly
chosenneighbors, which renders the values ofP’s average path length to reach
any other node as well as its clustering coefficient, indistinguishable from the
respective values of other, older nodes. Second, since there areℓ random nodes in
the overlay that knowP, P’s indegree is equal to the view length. Third, no other
node’s indegree has been modified.

In the presence of node failures or an unreliable network, some of the random
walks may fail. Note, however, that a node’s join does not depend on the complete
execution of this join procedure. We ran experiments (not presented here) that

28 BUILDING RANDOM OVERLAYS: CYCLON CHAP. 2

showed that a node can join by simply being involved in a swap with a single
participating node. In that case, though, it will take a few cycles until the new
node’s properties become indistinguishable from the respective properties of other
nodes. The join procedure described above is meant as a means of efficient node
joining at a cost of a constant number of messages.

2.4. REMOVING NODES

In a dynamically changing overlay, nodes may leave for various reasonsand
in various ways. We make no distinction between nodes disconnecting gracefully
or abruptly. What we are interested in is that, once a node disconnects, other
nodes should detect it and remove any pointers to it in a timely manner. We
consider pointers to disconnected nodes to constitute a sort of viewpollution, as
they take up slots that could be otherwise holding valid, useful links. Particularly
in highly dynamic environments, timely elimination of dead links is crucial for
the robustness of the overlay.

In order to keep the protocol simple and inexpensive, we do not add anyex-
plicit messages (such as frequent pings) to detect disconnected nodes. Instead,
CYCLON uses a transparent dead-link detection mechanism, based on the default
swap operation. We do, however, employ an effective strategy (by means of the
agefield introduced in enhanced swapping) to improve timely detection of dis-
connected nodes “for free”, as a natural consequence of the emergent behavior of
enhanced swapping.

When a node tries to initiate a swap with a neighbor and gets no reply within
a predefined timeout, it simply assumes that neighbor to be disconnected and re-
moves the corresponding neighbor from its view. This way, dead links aregradu-
ally being removed. Note that the timeout should be at least twice the maximum
typical latency in the underlying network. For simplicity, a timeout equal to the
gossip period∆T would suffice.

In the case of basic swapping, the detection of dead links relies on chanceand
takes unbounded time. In CYCLON’s enhanced swapping, though, the age field
defines a key priority in which neighbors are contacted. A young descriptor (i.e.,
with low age), whose node is quite probably still alive, is less likely to be chosen
for swapping. In contrast, a descriptor that has been injected in the network sev-
eral cycles ago (and has since been hopping around between nodes due to gossip
exchanges), is more likely to be the oldest one in the view currently hosting it, and
therefore more likely to be selected to gossip with. In general, the longer a node
descriptor stays in the network, the higher the chances it is selected for gossiping.
WhenP initiates a gossip and selects a descriptor referring to peerQ, that descrip-

SEC. 2.5 ROBUSTNESS- SELF HEALING BEHAVIOR 29

 0

 10000

 20000

 30000

 40000

 50000

 0 50 100 150 200 250 300 350 400

de
ad

 n
od

es
 s

til
l r

em
em

be
re

d

cycles since 50,000 nodes disconnected

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0 50 100 150 200 250 300 350 400

lin
ks

 to
 d

ea
d

no
de

s
cycles since 50,000 nodes disconnected

basic swapping, =50
enhanced swapping, =50ℓ

ℓ

(a) (b)

Figure 2.8: (a) Time until dead nodes are forgotten. (b) Number of dead links.

tor is then replaced by a fresh (i.e., with age 0) descriptor of peerP. This process
naturally recycles the node descriptors, maintaining an equilibrium with respect
to their ages, consequently limiting the lifetime of a link. This way, it is no longer
possible for old links to disconnected nodes to linger around indefinitely.

To demonstrate the advantages of CYCLON’s enhanced swapping with respect
to node removal, we ran experiments where we suddenly killed half of the nodes
after the overlay had converged. As we shall show in the next section, such a dras-
tic change poses no threat to the (remaining) overlay’s connectivity. We observed
how long it took for the remaining nodes to “forget” the dead ones. Figure2.8
shows the respective graphs for the experiment with 100,000 nodes, out of which
50,000 were killed at once. Figure2.8(a) shows how long dead nodes are still
referenced, while Figure2.8(b) shows the number of dead links that are main-
tained since the nodes were killed. It is clear that enhanced swapping limits the
detection of dead nodes to a number of cycles equal to (in fact less than) the view
length, while basic swapping takes almost an order of magnitude more cycles to
decontaminate the surviving nodes’ views.

2.5. ROBUSTNESS - SELF HEALING BEHAVIOR

In the previous section, we dealt with node disconnections, and we mentioned
that killing half of the nodes at once does not threaten the connectivity of the re-
maining ones. In this section, we explore CYCLON’s limits in terms of robustness
to node disconnections. Swapping proves to be a very strong and robust epidemic
protocol with respect to keeping an overlay connected. Moreover, it appears to ex-

30 BUILDING RANDOM OVERLAYS: CYCLON CHAP. 2

hibit robustness to node disconnections similar to the one found in random graphs.

We conducted experiments as follows. We used CYCLON to create overlays
(until they converged), and subsequently examined how the connectivityis af-
fected by node removals. Figure2.9 presents the results for networks with ini-
tially 100,000 nodes, and view lengths 20, 50, and 100, respectively. For the sake
of comparison, it also presents the same graphs for overlays of view length 20 and
50, where the neighbors were randomly chosen among the whole node set.Note
that basic swapping has the same behavior as enhanced swapping with respect to
robustness, and therefore the corresponding graphs are not shown. Figure2.9(a)
shows the number of disjoint clusters as a function of the percentage of nodes
removed. Note that the number of clusters decreases as we approach 100% node
removal because the total number of surviving nodes becomes too small. Fig-
ure2.9(b) shows the number of nodes not belonging to the largest cluster, in log
scale.

These graphs show considerable robustness to node failures, especially con-
sidering the fact that in the early stages of clustering very few nodes areout of
the largest cluster, which indicates that most nodes are still connected in a single
large cluster. Moreover, swapping appears to share the same robustness properties
with overlays where each node’s neighbors are a random sample of the nodes in
the network.

Note that the graph for the experiment with view length 100 is practically a
flat line. That is, for 100,000 nodes and view length 100, the overlay created is so
robust, that no matter how many nodes are removed, the remaining ones remain
connected in asinglecluster.

The effect of the view length on the overlay’s robustness is shown in Fig-
ure 2.10. We carried out 100 experiments, with view lengths 1,2, . . . ,100, and
for each of them we determined the percentage of random nodes neededto be re-
moved in order to partition the overlay. It can be seen that there is a critical value
of the view length around eleven. Overlays with smaller view lengths exhibit sig-
nificantly worse behavior with respect to robustness. On the other hand,overlays
with view length over 85 or 90, are almost impossible to partition, no matter how
many nodes are removed.

It is important to point out that the results presented in this and the previous
section, suggest that CYCLON is capable of repairing an overlay after a serious
disaster, a property often referred to asself-healingbehavior. This comes as a
consequence of the following two facts. First, the overlay has proven to be highly
resilient to large-scale node failures. Second, once such a massive failure has oc-
curred, the surviving nodes quickly strengthen the connectivity among themselves
by replacing links to dead nodes with valid links in a timely manner.

SEC. 2.6 ROBUSTNESS- SELF HEALING BEHAVIOR 31

 0

 200

 400

 600

 800

 1000

 1200

 1400

 60 65 70 75 80 85 90 95 100

nu
m

be
r

of
 c

lu
st

er
s

(li
ne

ar
)

percentage of nodes removed

=20
=50

=100
random, =20
random, =50ℓ

ℓ
ℓ
ℓ
ℓ

100

101

102

103

 60 65 70 75 80 85 90 95 100
nu

m
. o

f n
od

es
 n

ot
 c

on
ne

ct
ed

 to
 th

e
la

rg
es

t c
lu

st
er

 (
lo

g)

percentage of nodes removed

=20
=50

=100
random, =20
random, =50ℓ

ℓ
ℓ
ℓ
ℓ

(a) (b)

Figure 2.9: (a) Number of disjoint clusters, as a result of removing a largeper-
centage of nodes. Shows that the overlay does not break into two or moredisjoint
clusters, unless a major percentage of the nodes are removed. (b) Number of nodes
not belonging to the largest cluster. Shows that in the first steps of clustering only
a few nodes are separated from the main cluster, which still connects the grand
majority of the nodes.

0

10

20

30

40

50

60

70

80

90

100

 0 20 40 60 80 100

m
in

 %
 o

f n
od

e
re

m
ov

al
s

to
 c

au
se

 p
ar

tit
io

ni
ng

view length

Figure 2.10: Tolerance to node removal, as a function of the view length. Network
size is 100K nodes.

32 BUILDING RANDOM OVERLAYS: CYCLON CHAP. 2

2.6. BANDWIDTH CONSIDERATIONS

Due to the periodic behavior of gossiping, the price of maintaining a robust
overlay may inhibit a high usage of network resources (i.e., bandwidth). In the
case of CYCLON, the per-node network load depends on two factors: the amount
of data transferred per cycle, and the cycle duration.

In each cycle, a node gossips on average twice: exactly once as an initiator
and on average once as a responder. It, therefore, on average, sends two gossip
messages and receives another two in each cycle. Ifg is the gossip length, a gossip
message consists ofg node descriptors. A node descriptor is assumed to be 8 bytes
long (IP address: 4 bytes, port: 2 bytes, age: 2 bytes), so, a gossip message is 8·g
bytes long. Therefore, in each cycle a node experiences a total trafficof 32· g
bytes.

Choosing a gossip length in the range of 3 to 8, we achieve nearly optimal con-
vergence speed with respect to the number of cycles (see Figure2.7). The choice
of the period∆T depends on the underlying network’s bandwidth availability, as
well as on the network’s expected churn rate and the application’s need for quick
convergence. For relatively fast convergence, say, within a few minutes, we could
setg = 8 and∆T = 10sec. In this case, a node would transfer 256 bytes every
10 seconds, that is, 25.6B/sec (∼200bps). This is very low bandwidth that could
be sustained even by modem connections. For less demanding environmentsthat
experience limited churn and failure rate, we could setg = 1 and∆T = 1min,
resulting in a negligible bandwidth of less than 5bps per node.

This analysis backs our claim about CYCLON being inexpensive. Finally, note
that all communication is carried out in a connectionless fashion, sending UDP
packets.

2.7. APPLICATIONS

CYCLON is a core technology that can be employed as a building block in
P2P applications, particularly in highly dynamic environments. The applications
briefly described in this section demonstrate the utility of CYCLON in a range of
different contexts.

In our work on Chapter4, we use CYCLON as a component in a composite
gossiping protocol that establishes links between nodes that demonstrate some
relationship, building (almost) arbitrary topologies. In this case, CYCLON serves
as a lightweight means of learningrandomnodes of the network.

Another potential use of CYCLON is self-monitoring for very large clusters
of nodes, possibly in the wide-area, avoiding centralized or hierarchical archi-

SEC. 2.8 THE NEWSCASTPROTOCOL 33

tectures. In such a scheme, each node of a cluster is monitored by some other
random nodes of the cluster. The bounded indegree of nodes ensures that at any
given moment, each and every node will be pointed at (and therefore monitored)
by a number of other nodes more or less equal to the view length. This ensures
that no node will be left unattended at all.

In [Stavrou et al. 2004], the basic swapping algorithm is employed to construct
an overlay that handles flash crowds. Upon detection of a flash crowd condition
with respect to a document request, a client node abandons the respective server,
and attempts to retrieve the document in question from peers that have already
obtained it. In order to locate the document, the client node performs a series
of randomized, scoped searches over the links of the overlay created by basic
swapping.

In our work in Chapter5 (also appearing in [Voulgaris and van Steen 2003]),
we apply a different gossiping protocol, NEWSCAST [Jelasity et al. 2003; Voul-
garis et al. 2003] (described below), in managing P2P routing tables. In particular,
we exploit the randomized overlay of NEWSCAST to pick nodes that satisfy cer-
tain criteria, to fill in Pastry-like [Rowstron and Druschel 2001a] routing tables.
CYCLON is, in fact, a better candidate than NEWSCAST in that application, as it
exhibits a superior randomness property and lower bandwidth requirements com-
pared to NEWSCAST.

Finally, in Newscast EM [Kowalczyk and Vlassis 2004], Kowalczyk and Vlas-
sis use CYCLON for data aggregation, and more specifically as a component of a
distributed Expectation-Maximization (EM) algorithm for probabilistic clustering
of a set of (geographically) dispersed data. In particular, they conclude that aggre-
gation using CYCLON is performedfasterthan in a fully connected graph. This is
due to the bounded indegree of nodes, which results in each node havingan equal
influence on the aggregation.

2.8. THE NEWSCAST PROTOCOL

For the sake of completeness, we now turn our attention to NEWSCAST, a
protocol that preexisted CYCLON, and which greatly contributed in developing a
mindset that led to the design of the latter.

NEWSCAST, invented and introduced by Ḿark Jelasity et al. in [Jelasity et al.
2003], is a protocol for membership management and information dissemination
in large-scale, distributed systems. Much like CYCLON, it employs a simple epi-
demic protocol to form an overlay network and to keep it connected.

NEWSCASTand CYCLON operate along very similar gossiping paradigms. In
short, their differences lie in the following three key points. First, with respect to

34 BUILDING RANDOM OVERLAYS: CYCLON CHAP. 2

peer selection, in NEWSCAST nodes select arandomneighbor from their views
to gossip with, rather than the oldest one in CYCLON. Second, when gossiping,
nodes always send each other theirwholeview. Third, views are not swapped
when gossiping. Instead, they aremerged, and each node updates its view by
keeping the youngest pointers out of this merged set.

In addition to these three key differences, NEWSCASTemploystimestampsto
track a pointer’s age, in place of CYCLON’s agefield. However, this is merely
a matter of choice that does not significantly affect either protocol’s behavior.
Therefore, it does not constitute a key difference between the two protocols.

We subsequently provide a brief overview of NEWSCAST’s operation, and
then explore some properties of its emergent behavior.

2.8.1. Principal Operation

In NEWSCASTeach node maintains a small, fixed-sized view ofℓ peers. A node
descriptor contains the network address of another peer, and atimestampdenoting
when this descriptor was created. For simplicity we currently assume globally
synchronized time, but we relax this assumption below.

The basic idea is that each node periodically picks a random peer from its view
to gossip with and subsequently both nodes replace their view entries with theℓ
freshest descriptors of the union of their original views. More formally,each node
P executes the following five steps once every∆T time units (∆T is referred to as
therefresh interval):

1. Randomly select a peerQ from P’s own view.

2. Add a fresh descriptor (i.e., timestamped with the current time) withP’s
address toP’s own view.

3. SendP’s view to Q, and, in return, receiveQ’s view (augmented by fresh
descriptor ofQ).

4. Discard descriptors ofP (if any), and descriptors that are already inP’s
view.

5. Keep theℓ newest descriptors and discard the rest.

PeerQ executes the last four steps as well, so that after the exchange both
peers have the same merged view set, except for a pointer to each other. Note,
however, that as soon as any of them executes the protocol again, theirrespective
views will most likely be different again.

SEC. 2.8 THE NEWSCASTPROTOCOL 35

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 100000 50000 20000 10000 5000 2000 1000

av
er

ag
e

pa
th

 le
ng

th
 (

lin
ea

r)

number of nodes (log)

=20
=50

=100ℓ
ℓ
ℓ

0.05

0.10

0.15

0.20

0.25

0.30

0.35

 100000 50000 20000 10000 5000 2000 1000

cl
us

te
rin

g
co

ef
fic

ie
nt

 (
lin

ea
r)

number of nodes (log)

(a) (b)

Figure 2.11: NEWSCAST converged state. (a) Average shortest path length be-
tween two nodes. (b) Average clustering coefficient taken over all nodes.

This algorithm resembles the traditional push-pull epidemic protocol [Demers
et al. 1987]. A critical difference, however, is that no correspondent knows the
complete member list, but only a small, random fraction of it.

Finally, regarding the synchronized time assumption, the protocol does not
really require that clocks be synchronized, but only that the timestamps of all
descriptors in a single view be mutually consistent. We assume that the communi-
cation time between two peers is much shorter than∆T (which is generally in the
order of tens of seconds or minutes). When a peerP passes its view toQ, it also
sends along its current local time,TP. WhenQ receivesP’s view, it adjusts the
timestamp of every descriptor with a valueTP−TQ, effectively normalizing them
to its local time.

2.8.2. Properties of NEWSCAST

In this section we provide a brief presentation of NEWSCAST’s basic properties,
under the prism of CYCLON. It is particularly interesting to see how the two
protocols’ different design choices reflect on their behavior.

Average path length First, with respect to the average path length between
nodes, the two protocols’ difference is rather insignificant. Figure2.11(a) shows
the average path length in NEWSCAST overlays for a multitude of view lengths
and network sizes. Although CYCLON overlays exhibit slightly lower average
path lengths, as seen in Figure2.5(b), we do not consider this a noteworthy differ-
ence.

36 BUILDING RANDOM OVERLAYS: CYCLON CHAP. 2

Clustering A more substantial difference is observed with respect to clustering.
Figure2.11(b) shows the average clustering coefficient for NEWSCASToverlays
of various view lengths and network sizes. Clustering is significantly highercom-
pared to the respective CYCLON overlays shown in Figure2.5(b).

High clustering is a direct consequence of the NEWSCAST protocol opera-
tion. After a view exchange, two nodes share exactly the same view, apartfrom a
pointer to each other. In essence, by exchanging views two nodes maximizetheir
clustering with respect to each other. Exactly the opposite happens in CYCLON.
By swappingneighbors, two nodes maintain their views’ diversity. In fact, two
views’ diversity may evenincreasein case a common neighbor is shipped over to
the other peer, and subsequently discarded while eliminating duplicate pointers.
The effect of keeping common neighbors as opposed to distinct ones after a view
exchange, is further studied and analyzed in Chapter3.

Note that the combination of high clustering with low average path length
suggests that the induced NEWSCASToverlays have many properties in common
with what are known assmall-world networks[Albert and Barab́asi 2002]. In
contrast, CYCLON overlays have shown to resemble random graphs.

Degree distribution Figure2.12shows the indegree distribution of NEWSCAST

and CYCLON overlays, as well as for a regular random graph. We consider graphs
with 100,000 nodes, and view lengths 20 and 50, respectively. The vertical axis is
in logarithmic scale. There is a clear difference between the two protocols. NEWS-
CAST exhibits a widely skewed distribution of incoming links centered around
small values, with a tail reaching out to almost an order of magnitude higher
values, unlike CYCLON, which imposes a bounded indegree in a self-regulated
manner.

Self healing Finally, it is interesting to see how the two protocols perform at
removing dangling links to dead nodes. We repeated the catastrophic failureex-
periment presented in Section2.4, this time for NEWSCAST. In that experiment,
we abruptly killed half of the nodes of an already converged overlay, and observed
how long it takes the remaining nodes to “forget” the dead ones.

Figure2.13shows the number of dead nodes still remembered and the number
of links to them as a function of the cycles elapsed since the catastrophic failure.
CYCLON graphs (enhanced swapping) shown in Figure2.8 are reproduced here
for comparison. NEWSCAST’s priority at keeping thefreshestpointers to neigh-
bors becomes evident by the speed at which dead nodes are forgotten.

The above illustrate the high dependence of protocol behavior on specific de-
sign choices. A comprehensive exploration of the design space, including CY-

SEC. 2.8 THE NEWSCASTPROTOCOL 37

100

101

102

103

104

105

 0 10 20 30 40 50 60 70

nu
m

be
r

of
 n

od
es

indegree

newscast, =20
cyclon, =20

reg.rand., =20ℓ
ℓ
ℓ

100

101

102

103

104

105

 0 50 100 150 200 250

nu
m

be
r

of
 n

od
es

indegree

newscast, =50
cyclon, =50

reg.rand., =50ℓ
ℓ
ℓ

Figure 2.12: Indegree distribution in converged 100,000 node overlay,for NEWS-
CAST, CYCLON (enhanced swapping), and a regular random graph of outdegree
ℓ.

 0

 10000

 20000

 30000

 40000

 50000

 0 5 10 15 20 25 30 35 40 45

de
ad

 n
od

es
 s

til
l r

em
em

be
re

d

cycles since 50,000 nodes disconnected

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0 5 10 15 20 25 30 35 40 45

lin
ks

 to
 d

ea
d

no
de

s

cycles since 50,000 nodes disconnected

cyclon, =50
newscast, =50ℓ

ℓ

(a) (b)

Figure 2.13: (a) Time until dead nodes are forgotten. (b) Number of deadlinks.

38 BUILDING RANDOM OVERLAYS: CYCLON CHAP. 2

CLON and NEWSCASTamong others, and its effect on overlay properties follows
in Chapter3.

2.9. AN APPLICATION: AGGREGATION

To illustrate the utilization of CYCLON overlays, let us now take a look at an
example gossip-based application.Aggregation, that is, the collective estimation
of system-wide properties, is a key functionality to a number of large-scale dis-
tributed systems. Such properties may refer to the network size, average system
load, node with the lowest or highest load, aggregate capacity in a distributed stor-
age system, etc. Aggregation should be carried out collectively by all participating
nodes in a purely distributed fashion, and the results should become knownto all
nodes.

Aggregation is not the focus of this dissertation. For more information the
reader is directed to work such as [Gupta et al. 2001], [Kempe et al. 2001], [Kempe
et al. 2003], [Renesse et al. 2003], [Jelasity et al. 2005], [Jelasity and Montresor
2004], [Montresor et al. 2004], and [Kowalczyk and Vlassis 2004]. In this section
we adopt the basic aggregation protocol followed in all aforementioned publica-
tions, and we show how it can benefit from CYCLON’s properties.

We consider a basic aggregation protocol that follows the push-pull gossip-
based paradigm, appearing in [Jelasity et al. 2005]. Each node is assumed to
have a localestimateof the property being aggregated and a set ofneighbors.
At random times, but exactly once everyδ time units, a node picks a random
neighbor and they exchange their estimates. Subsequently, each node updates its
local estimate based on its previous value and the estimate received.

Averagingconstitutes a fundamental aggregation operation, in which each
node is equipped with a numeric value, and the goal is to estimate the average
of all nodes’ values. Jelasity et al. [Jelasity et al. 2005] show how averaging can
be used as the basis for the computation of other aggregates, including generalized
mean, variance, counting of nodes, sum, and product.

In averaging, a node updates its estimate to the average between its previous
local estimate and the estimate received. That is, when nodesp andq with esti-
matessp andsq gossip, their estimates are updated as follows:

sp = sq =
sp +sq

2

Note that the sum of the two nodes’ estimates does not change, Thereforeneither
does the global average. The variance, however, over the set of allnodes’ esti-
mates decreases, unlesssp andsq were already equal, in which case it remains
unaltered. Experiments and theoretical analysis in [Jelasity et al. 2005; Jelasity

SEC. 2.9 AN APPLICATION: AGGREGATION 39

10-20

10-15

10-10

10-5

100

 0 5 10 15 20 25 30 35 40

va
ria

nc
e

of
 e

st
im

at
es

 (
no

rm
al

iz
ed

 to
 s

ta
rt

 a
t 1

)

cycles

newscast
cyclon

fully connected

Figure 2.14: Aggregation in static overlays.

and Montresor 2004; Montresor et al. 2004; Kowalczyk and Vlassis 2004] show
that the variance converges to zero. Moreover, it converges at an exponential rate,
whose exponent depends on the communication graph defining the nodes’neigh-
bors. The rule of thumb is that the higher the link randomization in an overlay, the
faster the aggregation convergence.

Here we evaluate averaging over CYCLON and NEWSCASToverlays, in one
staticand twodynamicsettings. All presented experiments involve 100,000 nodes,
and a view length of 20.

Aggregation over static overlays In our first experiment setting, we applied
averaging over converged, static CYCLON and NEWSCASToverlays. Bystaticwe
mean that, after an overlay had converged, we ceased gossiping and studied ag-
gregation over its—static—links. Figure2.14shows the evolution of the variance
as a function of the aggregation cycles (δ time units) elapsed. To have a point of
reference, we also plot the variance evolution for averaging over a fully connected
graph, in which a node exchanges estimates with a node picked randomly outof
the whole network. Fully connected graphs demonstrated the fastest convergence
among all overlays tested in [Jelasity et al. 2005].

First, we observe that in all cases the variance converges to zero at anexponen-
tial rate. Second, we record a clear difference between the aggregation efficiency
of static CYCLON and NEWSCASToverlays, the former converging significantly
faster. This is a direct consequence of CYCLON’s narrow indegree distribution and
very low clustering. Each node has roughly the same number of incoming links,
and therefore participates in roughly the same number of estimation exchanges as
all other nodes. Moreover, the very low clustering ensures that each node’s initial
value is uniformly spread across “all directions” of the network, not being con-

40 BUILDING RANDOM OVERLAYS: CYCLON CHAP. 2

10-20

10-15

10-10

10-5

100

 0 5 10 15 20 25 30 35 40

va
ria

nc
e

of
 e

st
im

at
es

 (
no

rm
al

iz
ed

 to
 s

ta
rt

 a
t 1

)

cycles

newscast
cyclon

fully connected

Figure 2.15: Aggregation in dynamic overlays.

fined to any highly clustered subset. This leads to faster convergence ofnodes’
estimates to the global average. On the other hand, NEWSCAST’s skewed inde-
gree distribution results in an uneven distribution of estimation exchanges across
nodes. Also, due to high clustering, local estimates spread quickly within highly
clustered communities, but take longer to spread globally.

Aggregation over dynamic overlays Although sufficiently random static topolo-
gies are good enough for aggregation, they are not adequate for dynamic environ-
ments. In real world systems, a dynamic overlay management protocol —such
as CYCLON or NEWSCAST— is needed to deal with network changes. Conse-
quently, in our second experiment we evaluated averaging overdynamicover-
lays. More specifically, each node was running an overlay management protocol
(CYCLON or NEWSCAST) and the averaging protocol. Both overlay management
and averaging protocols were running at the same frequency, that is, each one ex-
ecuted at a random time (not necessarily together) but exactly once every δ time
units. The node to exchange averaging estimates with, was picked randomly out
of the overlay management protocol’s current view.

Figure2.15presents the variance evolution for CYCLON, NEWSCAST, and a
fully connected graph of 100,000 nodes. Clearly, both protocols perform better
compared to their static counterparts. The gain is larger for NEWSCAST, as its dy-
namic execution significantly increases “randomness” in nodes’ views. CYCLON,
whose static views already resembled regular random graph edges, does not gain
as much, nevertheless it still outperforms NEWSCAST.

In further experiments (not shown here) we observed that when the overlay
management protocol runsfaster than the averaging one, even more randomness
is introduced in both protocols, gradually approaching the fully connectedgraph

SEC. 2.10 AN APPLICATION: AGGREGATION 41

behavior. In fact, when the overlay management protocol runs at an order of 10
times faster than averaging, both protocols effectively converge like a fully con-
nected graph. The tradeoff for this—better—randomness and faster aggregation
is the higher gossiping frequency for overlay management, resulting in morenet-
work traffic.

Aggregation piggybacked on overlay management Our third set of experi-
ments is based on a scheme combining the aggregation algorithm with the over-
lay management protocol. The idea is topiggybackestimation exchanges on the
view exchange messages used for overlay management. The evident benefit of
this combination is that aggregation comes for free: aggregation messages are
replaced by a few extra bytes in overlay management messages.

In the case of CYCLON a more significant—albeit less obvious—benefit ap-
plies. CYCLON has proved to trigger highly even communication among nodes.
That is, in each cycle each node initiates gossipingexactly oncewith a random
node, and is contacted for gossiping by anotherrandomnodealmost exactly once.
When piggybacked on CYCLON, aggregation adopts this highlyevenandrandom-
izedcommunication pattern, further improving its convergence rate.

On the contrary, piggybacking aggregation on NEWSCASThas a negative ef-
fect. In NEWSCAST, two nodes that gossip end up with the same view (see Sec-
tion 2.8.1). If these two nodes also engage in aggregation exchange, the (negative)
effect of clustering is maximized: The two fresh estimates are confined in two
nodes belonging to the exact same cluster, hindering their fast diffusion todistant
nodes in the network.

The results of the piggybacked setting are shown in Figure2.16. Note that
averaging piggybacked on CYCLON converges as fast as on a fully connected
graph. On the other hand, we can clearly see the negative effect of piggybacking
on NEWSCAST, as explained above.

To sum up our findings, we conclude that CYCLON constitutes a very attrac-
tive overlay management protocol for aggregation, either for static or dynamic
environments.

Although aggregation is not one of the core applications presented in this dis-
sertation, it allowed us briefly illustrate how applications can benefit from CY-
CLON’s particular properties. A number of additional applications based on CY-
CLON are extensively presented and evaluated in Part II.

42 BUILDING RANDOM OVERLAYS: CYCLON CHAP. 2

10-20

10-15

10-10

10-5

100

 0 5 10 15 20 25 30 35 40

va
ria

nc
e

of
 e

st
im

at
es

 (
no

rm
al

iz
ed

 to
 s

ta
rt

 a
t 1

)

cycles

newscast
cyclon

fully connected

Figure 2.16: Aggregation in piggy-backed version.

2.10. RELATED WORK

There are currently several efforts in constructing unstructured overlays that
share properties with random graphs. We have already described basic swapping,
introduced in [Stavrou et al. 2004], forming the starting point for our own work
described in this chapter.

Another example is the Scamp protocol [Ganesh et al. 2003], which is explic-
itly designed to construct overlays with evenly distributed links, achieving view
lengths ofO(logN) without prior knowledge ofN. Scamp is reactive, in the sense
that view exchanges take place only when nodes join, leave, or a failure isde-
tected. As it turns out, the protocol exhibits similar properties in comparison to
random graphs when considering its capabilities for information dissemination
and recovering from massive node failures. However, no thorough analysis has
been undertaken to compare the communication graph with random graphs aswe
did, but it is known that there are important differences. A proactive extension of
Scamp is suggested in [Massoulie et al. 2003], improving the protocol’s behavior
with respect to load balancing and resilience to failures in dynamic settings.

In many unstructured overlays, such as CYCLON, scalability of the network
is achieved by maintaining a partial view on the entire network. The construction
of the network itself, that is, membership management, is crucial as we have ar-
gued in this chapter. It is interesting to see that the assumption is sometimes made
that the communication graph resulting from a specific membership protocol is
random. However, as we will see in Chapter3, there is a large family of member-
ship protocols for unstructured overlays for which this assumption is false. This
includes the work on Lightweight Probabilistic Multicast [Eugster et al. 2003b],
as well as the NEWSCAST protocol [Jelasity et al. 2003; Voulgaris et al. 2003].

SEC. 2.11 RELATED WORK 43

As it turns out, such membership protocols generally lead to small-world graphs,
which distinguish themselves from random graphs by a high clustering coefficient.
In contrast, CYCLON overlays appear to fall outside the category of small-world
networks.

Of course, random graphs may not be the best structure for communication
networks. Alternative schemes are described in [Pandurangan et al. 2003; Law
and Sui 2003]. In these cases, the requirements of low diameter, resilience to
massive node failures, and inexpensive membership management lead to specific
graph-construction protocols. We argue that with enhanced swapping these re-
quirements are all met, and that the resulting communication graphs allow us to
adopt the rigorous analysis of random graphs. Moreover, in contrast to, for exam-
ple [Pandurangan et al. 2003], there is no need to use a central server.

In this light, it is also interesting to mention the recent work on Phenix for the
decentralized construction of low-diameter, scale-free networks [Wouhaybi and
Campbell 2004]. In Phenix, an additional goal is to construct networks that are
resilient to massive malicious attacks. We have not yet examined this feature for
CYCLON, but suspect its good randomness properties will help in also making it
attack resilient.

Finally, it is interesting to discuss Kelips [Gupta et al. 2003], [Linga et al.],
a DHT based on gossiping. Kelips imposes a fixed structure on a network ofN
nodes, organizing them in

√
N groups of

√
N nodes each. Each node maintains

a complete view of its group (O(
√

N)links), and at least one link to each other
group (O(

√
N) links). Routing is, therefore, performed at constant time, namely

in two steps: in the first step a message is routed to the appropriate group, in the
second it reaches the target node within that group. Gossiping is applied tospread
membership information within and across groups. Old links are discarded based
on their age.

The main philosophy behind Kelips is trading per-node memory requirements
for constant time lookups. Indeed, increased memory requirements pose no seri-
ous constraints on contemporary memory-abundant computer systems. However,
another facet of this design decision has been overlooked. The largera view is,
the harder it becomes to keep it up-to-date in the face of node churn and network
changes, leading to incomplete or inaccurate views. It is therefore unclear whether
the constant time lookup premise of Kelips is maintained when the scale of the
system increases and membership becomes highly dynamic. However, the con-
cept of discarding links solely based on their age, rather than due to a predefined,
fixed view length (as in CYCLON), seems highly promising and deserves further
research. It can lead to the design of a family of gossiping protocols (of which
Kelips is an instance), different than the protocols dealt with in this dissertation.

44 BUILDING RANDOM OVERLAYS: CYCLON CHAP. 2

2.11. CONCLUSIONS AND FUTURE WORK

In this chapter we presented CYCLON, a complete framework for inexpensive
membership management in very large P2P overlays. CYCLON is highly scalable,
very robust, and completely decentralized. Most important is that the resulting
communication graphs share important properties with random graphs. Besides
the fact that desirable features such as low diameter and robustness aresupported,
this similarity justifiably opens the possibility to rigorously analyze the networks.

We also conclude that CYCLON is an improvement of the basic swapping
protocol developed by Stavrou et al. [Stavrou et al. 2004]. We offer a scalable and
inexpensive membership protocol, achieve better node-degree distributions, and
significantly lower the pollution of views concerning stale references to previous
members.

In addition to our continued pursuit for new applications of CYCLON, we will
also explore potential improvements of the protocol itself. An important next step
in our research will be the replacement of the periodic view exchanges witha
reactive exchange protocol, as in Scamp [Ganesh et al. 2003]. We envisage that
this replacement will lead to a better utilization of network resources, and incur
only minimal costs for detecting failed nodes. Another important subject that we
will address is taking network proximity into account. The latter will be largely
based on our scalable latency estimation service, described in [Szymaniak et al.
2004].

CHAPTER 3

Random Overlays: Exploring the
Design Space

This chapter is a paper under submission (extending [Jelasity et al. 2004a]):
Mark Jelasity, Spyros Voulgaris, Anne-Marie Kermarrec, Rachid Guerraoui,
Maarten van Steen
“Gossip-based Peer Sampling”

Gossip-based communication protocols are appealing in large-scale distributed
applications such as information dissemination, aggregation, and overlay topology
management. In this chapter we factor out a fundamental mechanism at the heart
of all these protocols: the PEER SAMPLING SERVICE. In short, this service pro-
vides every node with peers to gossip with. We promote this service at the level
of a first class abstraction of a large-scale distributed system, pretty much like a
name service is a first class abstraction of a local-area system. We present a ge-
neric framework to implement a PEER SAMPLING SERVICE in a decentralized
manner by constructing and maintainingdynamic unstructuredoverlays through
gossiping membership information itself. Our framework generalizes existing ap-
proaches and makes it easy to discover new ones. We use this frameworkto em-
pirically explore and compare several implementations of the PEER SAMPLING

SERVICE including existing gossiping approaches. Through extensive simulation
experiments we show that—although all protocols provide a good quality uniform
random stream of peers to each node locally—traditional theoretical assumptions
about the randomness of the unstructured overlays as a whole do not hold in any
of the instances. We also show that different design decisions result in severe dif-
ferences from the point of view of two crucial aspects: load balancing and fault

46 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

tolerance. Our simulations are validated through a real implementation over a
wide-area cluster.

3.1. INTRODUCTION

Gossip-based protocols, also called epidemic protocols, are appealing in large-
scale distributed applications. The popularity of these protocols stems from their
ability to reliably pass information among a large set of interconnected nodes,even
if the nodes regularly join and leave the system (either purposefully or on account
of failures), and the underlying network suffers from broken or slowlinks.

The common interaction pattern underlying gossip-based protocols consistsin
each node in the system periodically exchanging information with a subset ofits
peers. The choice of this subset is crucial to the wide dissemination of the gossip.
Ideally, any given node should exchange information with peers that areselected
following a uniform random sample ofall nodescurrently in the system [Demers
et al. 1987; van Renesse et al. 1998; Birman et al. 1999; Karp et al. 2000; Sun
and Sturman 2000; Kowalczyk and Vlassis 2004]. This assumption has led to
rigorously establish many desirable features of gossip-based protocolslike scala-
bility, reliability, and efficiency (see, e.g., [Pittel 1987] in the case of information
dissemination, or [Kempe et al. 2003; Jelasity et al. 2005] for aggregation).

In practice, enforcing this assumption would require to develop applications
where each node may be assumed to know of every other node in the system[Bir-
man et al. 1999; Gupta et al. 2002; Kermarrec et al. 2003]. However, providing
each node with a complete membership table from which a random sample can
be drawn, is unrealistic in a large-scale dynamic system, for maintaining such
tables in the presence of joining and leaving nodes (referred to aschurn) incurs
considerable synchronization costs. In particular, measurement studieson various
peer-to-peer networks indicate that an individual node may often be connected in
the order of only a few minutes to an hour (see, e.g. [Bhagwan et al. 2003; Saroiu
et al. 2003; Sen and Wang 2004]).

Clearly, decentralized schemes to maintain membership information are cru-
cial to the deployment of gossip-based protocols. This chapter factors out the
abstraction of a PEER SAMPLING SERVICE and presents a generic, yet simple,
gossip-based framework to implement it.

The PEER SAMPLING SERVICE is singled out from the application using
it and, abstractly speaking, the same service can be used in different settings:
information dissemination [Demers et al. 1987; Eugster et al. 2004], aggrega-
tion [Kempe et al. 2003; Jelasity et al. 2005, 2004b; Montresor et al. 2004], load
balancing [Jelasity et al. 2004c], membership management [Voulgaris et al. 2005],

SEC. 3.2 THE PEER SAMPLING SERVICE 47

and overlay bootstrapping [Jelasity et al. 2006; Voulgaris and van Steen 2003].
The service is promoted as a first class abstraction of a large-scale distributed sys-
tem. In a sense, it plays the role of a naming service in a traditional LAN-oriented
distributed system as it provides each node with other nodes to interact with.

The basic general principle underlying the framework we propose to imple-
ment the PEER SAMPLING SERVICE is itself based on a gossip paradigm. In
short, every node (1) maintains a relatively small local membership table that pro-
vides apartial view on the complete set of nodes and (2) periodically refreshes
the table using a gossiping procedure. The framework is generic and canbe used
to instantiate known [Eugster et al. 2003b; Jelasity et al. 2003; Voulgaris et al.
2005] and novel gossip-based membership implementations. In fact, our frame-
work captures many possible variants of gossip-based membership dissemination.
These variants mainly differ in the way the membership table is updated at a given
peer after gossiping with communicating peers. We use this framework to exper-
imentally evaluate various implementations and identify key design parameters
in practical settings. Our experimentation covers both extensive simulations and
emulations on a wide-area cluster.

We consider many dimensions when identifying qualitative differences be-
tween the variants we examine. These dimensions include the randomness of
selecting a peer as perceived by a single node, the accuracy of the current mem-
bership view, the distribution of the load incurred on each node, as well asthe
robustness in the presence of failures and churn.

As it turns out, we find that two peers should exchange elements from their re-
spective tables. In other words, communication should be bidirectional. Adhering
to a push-only or pull-only approach can easily lead to (irrecoverable) partition-
ing of the set of nodes. Another finding is that robustness against failingnodes or
churn can be easily accomplished if old table entries are dropped when exchanging
membership information.

However, as we shall also see, no single implementation outperforms the oth-
ers along all dimensions. In this study we identify these tradeoffs when selecting
an implementation of the PEER SAMPLING SERVICE for a given application. For
example, to achieve good load balancing, table entries should rather beswapped
between two peers. However, this strategy is less robust against failures and churn
than non-swapping ones.

3.2. THE PEER SAMPLING SERVICE

The PEER SAMPLING SERVICE is implemented over a set of nodes that form
the domain of the gossip-based protocols that make use of the service. Thesame

48 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

sampling service can be utilized by multiple gossip protocols simultaneously, pro-
vided they have a common target group. The task of the service is to providea
participating node of a gossiping application with a subset of peers from thegroup
to send gossip messages to.

3.2.1. API

The API of the PEERSAMPLING SERVICE simply consists of two methods:init
andgetPeer. It would be technically straightforward to provide a framework
for a multiple-application interface and architecture. For a better focus andsim-
plicity of notations we assume however that there is only one application. The
specification of these methods is as follows.

init() Initializes the service on a given node if this has not been done before.
The actual initialization procedure is implementation dependent.

getPeer() Returns a peer address if the group contains more than one node.
The returned address is a sample drawn from the group. Ideally, this sample
should be an independent unbiased random sample. The exact characteris-
tics of this sample (e.g., its randomness or correlation in time and with other
peers) is affected by the implementation.

The focus of the research presented in this chapter is to give accurate information
about the behavior of thegetPeer method in the case of a class of gossip-based
implementations. Applications requiring more than one peer call this method re-
peatedly.

Note that we do not define astop method. The reason is to ease the bur-
den on applications by propagating the responsibility of automatically removing
nonactive nodes to the service layer.

3.2.2. Generic Protocol Description

We consider a set of nodes connected in a network. A node has an address that is
needed for sending a message to that node. Each node maintains a membership
table representing its (partial) knowledge of the global membership. Traditionally,
if this knowledge is complete, the table is called theview. However, in our case
each node knows only a limited subset of the system, so the table is consequently
called apartial view. The partial view is a list ofℓ node descriptors. Parameterℓ
is called theview lengthand is the same for all nodes.

A node descriptor contains a network address (such as an IP address) and an
age that represents the freshness of the given node descriptor. The partial view
is a list data structure, and accordingly, the usual list operations are defined on it.

SEC. 3.2 THE PEER SAMPLING SERVICE 49

do forever
wait(T time units)
p← view.selectPeer()
if pushthen

// 0 is the initial age
buffer← ((MyAddress,0))
view.permute()
move oldest H items to end of view
buffer.append(view.head(ℓ/2))
send buffer top

else// empty view to trigger response
send (null) top

if pull then
receive bufferp from p

view.select(ℓ,H,S,bufferp)
view.increaseAge()

(a) active thread

do forever
receive bufferp from p
if pull then

// 0 is the initial age
buffer← ((MyAddress,0))
view.permute()
move oldest H items to end of view
buffer.append(view.head(ℓ/2))
send buffer top

view.select(ℓ,H,S,bufferp)
view.increaseAge()

(b) passive thread

methodview.select(ℓ,H,S,bufferp)
view.append(bufferp)
view.removeDuplicates()
view.removeOldItems(min(H,view.size-ℓ))
view.removeHead(min(S,view.size-ℓ))
view.removeAtRandom(view.size-ℓ)

(c) method view.select(ℓ,H,S,bufferp)

Figure 3.1: The skeleton of a gossip-based implementation of the PEER SAM -
PLING SERVICE.

Most importantly, this means that the order of elements in the view is not changed
unless some specific method (for example,permute, which randomly reorders
the list elements) explicitly changes it. The protocol also ensures that there isat
most one descriptor for the same address in every view.

The purpose of the gossiping algorithm, executed periodically on each node
and resulting in two peers exchanging their membership information, is to make
sure that the partial views contain descriptors of a continuously changingrandom
subset of the nodes and (in the presence of failure and joining and leaving nodes)
to make sure the partial views reflect the dynamics of the system. We assume
that each node executes the same protocol of which the skeleton is shown inFig-
ure3.1. The protocol consists of two threads: an active (client) thread initiating
communication with other nodes, and a passive (server) thread waiting forand
answering these requests.

We now describe the behavior of the active thread. The passive threadjust mir-
rors the same steps. The active thread gets activated in eachT time units exactly
once. Three globally known system-wide parameters are used in this algorithm:

50 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

parametersℓ (the partial view length on each node),H andS. For the sake of
clarity, we leave the details of the meaning and impact ofH andSuntil the end of
this section.

First, a peer node is selected to exchange membership information with. This
selection is implemented by the methodselectPeer that returns the address of
a live node. This method is a parameter of the generic protocol. We discuss the
implementations ofselectPeer in Section3.2.3.

Subsequently, if the information has to be pushed (boolean parameterpush
is true), then a buffer is initialized with a fresh descriptor of the node running
the thread. Then,ℓ/2 elements are appended to the buffer. The implementation
ensures that these elements are selected randomly from the view without replace-
ment, ignoring the oldestH elements (as defined by the age stored in the descrip-
tors). If there are not enough elements in the view, then the oldestH elements are
also sampled to fill in any remaining slots. In addition, the view will have exactly
the selected elements as first items (i.e., in the list head). This fact will be impor-
tant later. ParameterH is guaranteed to be less than or equal toℓ/2. The buffer
created this way is sent to the selected peer.

If a reply is expected (boolean parameterpull is true) then the received buffer
is passed to methodselect(ℓ,H,S,buffer), which creates the new view
based on the listed parameters, and the current view, making sure the size of the
new view does not decrease and is at mostℓ.

Finally, methodselect(ℓ,H,S,buffer) creates the new view based on
the listed parameters, and the current view as follows: After appending there-
ceived buffer to the view, it keeps only the freshest entry for each address. After
this operation, there is at most one descriptor for each address. At this point, the
size of the view is guaranteed to be at least the original size, since in the origi-
nal view each address was included also at most once. Subsequently, themethod
performs a number of removal steps to decrease the size of the view toℓ. The
parameters to the removal methods are calculated in such a way that the view size
never decreases underℓ. First, the oldest items are removed, as defined by their
age, and parameterH. The nameH comes fromhealing, that is, this parameter de-
fines how aggressive the protocol should be when it comes to removing links that
potentially point to faulty nodes (dead links). Note, that in this way self-healing
is implemented without actually checking if a node is alive or not. If a node is
not alive, then its descriptors will never get refreshed (and thus become old), and
therefore sooner or later get removed. The largerH is, the sooner older items will
be removed from views.

After removing the oldest items, theSfirst items are removed from the view.
Recall that it is exactly these items that were sent to the peer previously. As
a result, parameterS controls the priority that is given to the addresses received

SEC. 3.2 THE PEER SAMPLING SERVICE 51

from the peer. IfSis high, then the received items will have a higher probability to
be included in the new view. Since the same algorithm is run on the receiver side,
this mechanism in fact controls the number of items that areswappedbetween
the two peers, hence the nameS for the parameter. This parameter controls the
diversity of the union of the two new views (on the passive and active side). If S
is low then both parties will keep many of their exchanged elements, effectively
increasing the similarity between the two respective views. As a result, more
unique addresses will be removed from the system. In contrast, ifS is high, then
the number of unique addresses that are lost from both views is lower. The last
step removes random items to reduce the size of the view toℓ.

This framework captures the essential behavior of many existing gossip mem-
bership protocols (although exact matches often require small changes). As such,
the framework serves two purposes: (1) we can use it to compare and evaluate a
wide range of different gossip membership protocols by changing parameter val-
ues, and (2) it can serve as a unifying implementation for a large class of protocols.
As a next step, we will explore the design space of our framework, forming the
basis for an extensive protocol comparison.

3.2.3. Design Space

In this section we describe a set of specific instances of our generic protocol by
specifying the values of the key parameters. These instances will be analyzed in
the rest of the chapter.

Peer Selection As described before, peer selection is implemented byselect-
Peer() that returns the address of alive node as found in the caller’s current
view. In this study, we consider the followingpeer selectionpolicies:

rand Uniform randomly select an available node from the view
tail Select the node with thehighestage

Note that the third logical possibility of selecting the node with thelowestage is
not included since this choice is not relevant. It is immediately clear from simply
considering the protocol scheme that node descriptors with a low age refer to
neighbors that have a view that is strongly correlated with the node’s own view.
More specifically, the node descriptor with the lowest age always refersexactly to
the last neighbor the node communicated with. As a result, contacting this node
offers little possibility to update the view with unknown entries, so the resulting
overlay will be very static. Our preliminary experiments fully confirm this simple
reasoning. Since the goal of peer sampling is to provide uncorrelated random
peers continuously, it makes no sense to consider any policies with a bias towards
low age, and thus protocols that follow such a policy.

52 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

View propagation Once a peer has been chosen, the peers may exchange infor-
mation in various ways. We consider the following twoview propagationpolicies:

push The node sends descriptors to the selected peer
pushpull The node and selected peer exchange descriptors

Like in the case of the view selection policies, one logical possibility: thepull
strategy, is omitted. It is easy to see that the pull strategy cannot possibly provide
satisfactory service. The most important flaw of the pull strategy is that a node
cannot inject information about itself, except only when explicitly asked byan-
other node. This means that if a node loses all its incoming connections (which
might happen spontaneously even without any failures, and which is rather com-
mon as we shall see) there is no possibility to reconnect to the network.

View selection The parameters that determine how view selection is performed
areH, the self-healing parameter, andS, the swap parameter. Let us first note
some properties of these parameters. First, assuming thatℓ is even, all values
of H for which H > ℓ/2 are equivalent toH = ℓ/2, because the protocol never
decreases the view size underℓ. For the same reason, all values ofS for which
S> ℓ/2−H are equivalent toS= ℓ/2−H. Furthermore, the last, random removal
step of the view selection algorithm is executed only ifS< ℓ/2−H. Keeping this
in mind, we have a “triangle” of protocols withH ranging from 0 toℓ/2, and
with S ranging from 0 toℓ/2−H. In our analysis we will look at this triangle at
different resolutions, depending on the scenarios in question. As a minimum,we
will consider the three vertices of the triangle defined as follows.

blind H = 0,S= 0 Select blindly a random subset
healer H = ℓ/2 Select the freshest entries
swapper H = 0,S= ℓ/2 Minimize loss of information

3.2.4. Implementation

We now describe a possible implementation of the PEER SAMPLING SERVICE

API based on the framework presented in Section3.2.2. We assume that the ser-
vice forms a layer between the application and the unstructured overlay network.

Initialization Theinit method will cause the service to register itself with the
gossiping protocol instance that maintains the overlay network. From that point,
the service will be notified by this instance whenever the actual view is updated.

SEC. 3.3 LOCAL RANDOMNESS 53

Sampling As an answer to thegetPeer call, the service returns an element
from thecurrentview. To maximize the diversity of the returned peers, the service
makes a best effort not to return the same element twice during the period while
the given element is in the view: this would introduce an obvious bias and would
damage randomness. To achieve this, the service maintains a queue of elements
that are currently in the view but have not been returned yet. MethodgetPeer
returns the first element from the queue and subsequently it removes this element
from the queue. When the service receives a notification on a view update, it
removes those elements from the queue that are no longer in the current view,
and appends the new elements that were not included in the previous view. If the
queue becomes empty, the service falls back on returning random samples from
the current view. In this case the service can set a warning flag that canbe read
by applications to indicate that the quality of the returned samples is no longer
reliable.

In the following sections, we analyze the behavior of our framework in order
to gradually come to various optimal settings of the parameters. Anticipating our
discussion in Section3.7, we will show that there are some parameter values that
never lead to good results (such as selecting a peer from a fresh node descriptor).
However, we will also show that no single combination of parameter values is
always best and that, instead, tradeoffs need to be made.

3.3. LOCAL RANDOMNESS

Ideally, a PEER SAMPLING SERVICE should return a series of unbiased in-
dependent random samples from the current group of peers. The assumption of
such randomness has indeed led to rigorously establish many desirable features of
gossip-based protocols like scalability, reliability, and efficiency [Pittel 1987].

When evaluating the quality of a particular implementation of the service, one
faces the methodological problem of characterizing randomness. In this section
we consider a fixed node and analyze the series of samples generated atthat par-
ticular node.

There are essentially two ways of capturing randomness. The first approach is
based on the notion of Kolmogorov complexity [Li and Vitányi 1997]. Roughly
speaking, this approach considers as random any series that cannotbe compressed.
Pseudo random number generators are automatically excluded by this definition,
since any generator, along with a random seed, is a compressed representation of a
series of any length. Sometimes it can be proven that a seriescanbe compressed,
but in the general case, the approach is not practical to test randomness due to the
difficulty of proving that a seriescannotbe compressed.

54 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

The second, more practical approach assumes that a series is random ifany
statistic computed over the series matches the theoretical value of the same statis-
tic under the assumption of randomness. The theoretical value is computed in the
framework of probability theory. This approach is essentially empirical, because
it can never be mathematically proven that a given series is random. In fact,good
pseudo random number generators pass most of the randomness tests that belong
to this category.

Following the statistical approach, we view the PEERSAMPLING SERVICE (as
seen by a fixed node) as a random number generator, and we apply the same tra-
ditional methodology that is used for testing random number generators. Wetest
our implementations with the “diehard battery of randomness tests” [Marsaglia
1995], thede factostandard in the field.

3.3.1. Experimental Settings

We have experimented our protocols using the PeerSim simulator [PeerSim]. All
the simulation results were obtained using this implementation.

Thediehard test suite requires as input a considerable number of 32-bit in-
tegers: the most expensive test needs 6·107 of them. To be able to generate this
input, we assume that all nodes in the network are numbered from 0 toN. Node
N executes the PEER SAMPLING SERVICE, obtaining one number between 0 and
N−1 each time it calls the service, thereby generating a sequence of integers.If
N is of the formN = 2n +1, then the bits of the generated numbers form an unbi-
ased random bit stream, provided the PEER SAMPLING SERVICE returns random
samples.

Due to the enormous cost of producing a large number of samples, we re-
stricted the set of implementations of the view construction procedure to the three
extreme points:blind, healer andswapper. Peer selection was fixed to be
tail andpushpull was fixed as the communication model. Furthermore, the
network size was fixed to be 210 + 1 = 1025, and the view length wasℓ = 20.
These settings allowed us to complete 2·107 cycles for all the three protocol im-
plementations. In each case, nodeN generated four samples in each cycle, thereby
generating four 10-bit numbers. Ignoring two bits out of these ten, we generated
one 32-bit integer for each cycle.

Experiments convey the following facts. No matter which two bits are ignored,
it does not affect the results, so we consider this as a non-critical decision. Note
that we could have generated 40 bits per cycle as well. However, since many tests
in thediehard suit do respect the 32-bit boundaries of the integers, we did not
want to artificially diminish any potential periodic behavior in terms of the cycles.

SEC. 3.3 LOCAL RANDOMNESS 55

3.3.2. Test Results

A detailed description of the tests in thediehard benchmark is out of the scope
of this dissertation. In Table3.1we summarize the basic ideas behind each class
of tests. In general, the three random number sequences pass all the tests, in-
cluding the most difficult ones [Marsaglia and Tsang 2002], with one exception.
Before discussing the one exception in more detail, note that for two tests we did
not have enough 32-bit integers, yet we could still apply them. The first case is
the permutation test, which is concerned with the frequencies of the possible or-
derings of 5-tuples of subsequent random numbers. The test requires 5·107 32-bit
integers. However, we applied the test using the original 10-bit integers returned
by the sampling service, and the random sequences passed. The reason is that
ordering is not sensitive to the actual range of the values, as long as the range is
not extremely small. The second case is the so called “gorilla” test, which is a
strong instance of the class of the monkey tests [Marsaglia and Tsang 2002]. It
requires 6.7 ·107 32-bit integers. In this case we concatenated the output of the
three protocols and executed the test on this sequence, with a positive result. The
intuitive reasoning behind this approach is that if any of the protocols produces a
non-random pattern, then the entire sequence is supposed to fail the test,especially
given that this test is claimed to be extremely difficult to pass.

Consider now the test that proved to be difficult to pass. This test was an
instance of the class of binary matrix rank tests. In this instance, we take 6 con-
secutive 32-bit integers, and select the same (consecutive) 8 bits fromeach of the
6 integers forming a 6×8 binary matrix whose rank is determined. That rank can
be from 0 to 6. Ranks are found for 100,000 random matrices, and a chi-square
test is performed on counts for ranks smaller or equal to 4, and for ranks 5 and 6.

When the selected byte coincides with the byte contributed by one call to the
PEER SAMPLING SERVICE (bits 0-7, 8-15, etc), protocolsblind andswapper
fail the test. To better see why, consider the basic functioning of the rank test. In
most of the cases, the rank of the matrix is 5 or 6. If it is 5, it typically means that
the same 8-bit entry is copied twice into the matrix. Our implementation of the
PEER SAMPLING SERVICE explicitly ensures that the diversity of the returned
elements is maximized in the short run (see Section3.2.4). As a consequence,
rank 6 occurs relatively more often than in the case of a true random sequence.
Note that for many applications this property is actually an advantage. However,
healer passes the test. The reason of this will become clearer in the remaining
parts of this chapter. As we will see, in the case ofhealer the view of a node
changes faster and therefore the queue of the samples to be returned is frequently
flushed, so the diversity-maximizing effect is less significant.

The picture changes if we consider only every 4th sample in the random se-
quence generated by the protocols. In that case,blind andswapper pass the

56 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

Birthday Spacings The k-bit random numbers are interpreted as “birthdays”
in a “year” of 2k days. We takem birthdays and list the
spacings between the consecutive birthdays. The statistic is
the number of values that occur more than once in that list.

Greatest Common
Divisor

We run Euclid’s algorithm on consecutive pairs of random
integers. The number of steps Euclid’s algorithm needs to
find the greatest common divisor (GCD) of these consecu-
tive integers in the random series, and the GCD itself are
the statistics used to test randomness.

Permutation Tests the frequencies of the 5!= 120 possible orderings of
consecutive integers in the random stream.

Binary Matrix Rank Tests the rank of binary matrices built from consecutive in-
tegers, interpreted as bit vectors.

Monkey A set of tests for verifying the frequency of the occurrences
of “words” interpreting the random series as the output of a
monkey typing on a typewriter. The random number series
is interpreted as a bit stream. The “letters” that form the
words are given by consecutive groups of bits (i.e., for 2
bits there are 4 letters, etc).

Count the 1-s A set of tests for verifying the number of 1-s in the bit
stream.

Parking Lot Numbers define locations for “cars.” We continuously
“park cars” and test the number of successful and unsuc-
cessful attempts to place a car at the next location defined
by the random stream. An attempt is unsuccessful if the
location is already occupied (the two cars would overlap).

Minimum Distance Integers are mapped to two or three dimensional coordi-
nates and the minimal distance among thousands of con-
secutive points is used as a statistic.

Squeeze After mapping the random integers to the interval[0,1), we
test how many consecutive values have to be multiplied to
get a value smaller than a given threshold. This number is
used as a statistic.

Overlapping Sums The sum of 100 consecutive values is used as a statistic.
Runs Up and Down The frequencies of the lengths of monotonously decreasing

or increasing sequences are tested.
Craps 200,000 games of craps are played and the number of

throws and wins are counted. The random integers are
mapped to the integers 1, . . . ,6 to model the dice.

Table 3.1: Summary of the basic idea behind the classes of tests in thediehard
test suite for random number generators. In all cases tests are run with several
parameter settings. For a complete description we refer to [Marsaglia 1995].

SEC. 3.4 GLOBAL RANDOMNESS 57

test, buthealer fails. In this case, the reason of the failure ofhealer is exactly
the opposite: there are relatively too many repetitions in the sequence. Taking only
every 8th sample, all protocols pass the test.

Finally, note that even in the case of “failures,” the numeric deviation from
random behavior is rather small. The expected occurrences of ranks of ≤4, 5 and
6 are 0.94%, 21.74% and 77.31%, respectively. In the first type of failure, when
there are too many occurrences of rank 6, a typical failed test gives percentages
0.88%, 21.36% and 77.68%. When ranks are too small, a typical failure is, for
example, 1.05%, 21.89% and 77.06%.

3.3.3. Conclusions

The results of the randomness tests suggest that the stream of nodes returned by
the PEER SAMPLING SERVICE is close to random for all the protocol instances
examined. Given that some widely used pseudo random number generators fail at
least some of these tests, this is a highly encouraging result regarding the quality
of the randomness provided by this class of sampling protocols.

Based on these experiments, we cannot, however, conclude on global random-
ness of the resulting graphs. Local randomness, evaluated from a peer’s point of
view is important, however, in a complex large-scale distributed system, where
the stream of random nodes returned by the nodes might have complicated corre-
lations, merely looking at local behavior does not reveal some key characteristics
such as load balancing (existence of bottlenecks) and fault tolerance. In Sec-
tion 3.4we present a detailed analysis of the global properties of our protocols.

3.4. GLOBAL RANDOMNESS

In Section3.3we have seen that from a local point of view all implementations
produce good quality random samples. However, statistical tests for randomness
and independence tend to hide importantstructuralproperties of the systemas a
whole. To capture these global correlations, in this section we switch to a graph
theoretical framework. To translate the problem into a graph theoretical language,
we consider thecommunication topologyor overlay topologydefined by the set of
nodes and their views (recall thatgetPeer() returns samples from the view).
In this framework the directed edges of the communication graph are definedas
follows. If nodea stores the descriptor of nodeb in its view then there is a directed
edge(a,b) from a to b. In the language of graphs, the question is how similar
this overlay topology is to a random graph in which the descriptors in each view
represent a uniform independent random sample of the whole node set.

In this section we consider graph-theoretic properties of the overlay graphs.

58 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

An important example of such properties is thedegree distribution. The indegree
of nodei is defined as the number of nodes that havei in their views. The outde-
gree is constant and equal to the view sizeℓ. Degree distribution has many signif-
icant effects. Most importantly, degree distribution determines whether there are
hot spots and bottlenecks from the point of view of communication costs. In other
words,load balancingis determined by the degree distribution. It also has a di-
rect relationship with reliability to different patterns of node failures [Albert et al.
2000], and has an effect on the exact way epidemics are spread [Pastor-Satorras
and Vespignani 2001]. Apart from the degree distribution we also analyze the
clustering coefficient and average path length, as described and motivated in Sec-
tion 3.4.2.

The main goal of the work presented in this chapter is to explore the different
design choices in the protocol space described in Section3.2.2. More specifically,
we want to assess the impact of the peer selection, view selection, and view prop-
agation parameters. Accordingly, we chose to fix the network size toN = 104

and the maximal view size toℓ = 30. The results presented in this section were
obtained using the PeerSim simulation environment [PeerSim].

3.4.1. Properties of Degree Distribution

The first and most fundamental question is whether, for a particular protocol im-
plementation, the communication graph has some stable properties, which it main-
tains during the execution of the protocol. In other words, we are interested in the
convergence behaviorof the protocols. We can expect several sorts of dynamics
which include chaotic behavior, oscillations, and convergence. In caseof conver-
gence the resulting state may or may not depend on the initial configuration of the
system. In the case of overlay networks we obviously prefer to have convergence
towards a state that is independent of the initial configuration. This property is
calledself-organization. In our case it is essential that in a wide range of scenar-
ios the protocol instances should automatically produce consistent and predictable
behavior. Section3.4.1examines this question.

A related question is whether there is convergence and what kind of communi-
cation graph a protocol instance converges to. In particular, as mentioned earlier,
we are interested in what sense overlay topologies deviate from certain random
graph models. We discuss this issue in Section3.4.1.

Finally, we are interested in looking atlocal dynamicproperties along with
globally stabledegree distributions. That is, it is possible that while the overall
degree distribution and its global properties such as maximum, variance, average,
etc., do not change, the degree of the individual nodes does. This is preferable
because in this case even if there are always bottlenecks in the network, the bot-
tleneck will not be the same node all the time which greatly increases robustness

SEC. 3.4 GLOBAL RANDOMNESS 59

and improves load balancing. Section3.4.1is concerned with these questions.

Convergence

We now present experimental results that illustrate the convergence properties of
the protocols in three different bootstrapping scenarios:

Growing In this scenario, the overlay network initially contains only one node.
At the beginning of each cycle, 500 new nodes are added to the network
until the maximal size is reached in cycle 20. The view of these nodes is
initialized with only a single node descriptor, which belongs to the oldest,
initial node. This scenario is the most pessimistic one for bootstrapping the
overlays. It would be straightforward to improve it by using more contact
nodes, which can come from a fixed list or which can be obtained using
inexpensive local random walks on the existing overlay. However, in our
discussion we intentionally avoid such optimizations to allow a better focus
on the core protocols and their differences.

Lattice In this scenario, the initial topology of the overlay is a ring lattice, a
structured topology. We build the ring lattice as follows. The nodes are
first connected into a ring in which each node has a descriptor in its view
that belongs to its two neighbors in the ring. Subsequently, for each node,
additional descriptors of the nearest nodes are added in the ring until the
view is filled.

Random In this scenario the initial topology is defined as a random graph, in
which the views of the nodes were initialized by a uniform random sample
of the peer nodes.

As we focus on the dynamic properties of the protocols, we did not wish to
average out interesting patterns, so in all cases the result of a single runis shown in
the plots. Nevertheless, we ran all the scenarios 100 times to gain data on the sta-
bility of the protocols with respect to the connectivity of the overlay. Connectivity
is a crucial feature, a minimal requirement for all applications. The results of these
runs show that in all scenarios, every protocol under examination creates a con-
nected overlay network in 100% of the runs (as observed in cycle 300).The only
exceptions were detected during the growing overlay scenario. Table3.2 shows
the push protocols. With the push-pull scheme we have not observed partitioning.

The push versions of the protocols perform very poorly in the growing sce-
nario in general. Figure3.2illustrates the evolution of the maximal indegree. The
maximal indegree belongs to the central contact node that is used to bootstrap the

60 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

protocol partitioned average number average largest
runs of clusters cluster

(rand,healer,push) 100% 22.28 9124.48
(rand,swapper,push) 0% n.a. n.a.

(rand,blind,push) 18% 2.06 9851.11
(tail,healer,push) 29% 2.17 9945.21

(tail,swapper,push) 97% 4.07 9808.04
(tail,blind,push) 10% 2.00 9936.20

Table 3.2: Partitioning of the push protocols in the growing overlay scenario. Data
corresponds to cycle 300. Cluster statistics are over the partitioned runs only.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 50 100 150 200 250 300

m
ax

im
al

 in
de

gr
ee

cycles

push protocols

pushpull protocols

Figure 3.2: Evolution of maximal indegree in the growing scenario (recall that
growing stops in cycle 20). The runs of the following protocols are shown: peer
selection is either rand or tail, view selection is blind, healer or swapper, andview
propagation is push or pushpull.

network. After growing is finished in cycle 20, the push-pull protocols almost in-
stantly balance the degree distribution thereby removing the bottleneck. The push
versions, however, get stuck in this unbalanced state.

This is not surprising, because when a new node joins the network and gets an
initial contact node to start with, the only way it can get an updated view is if some
other node contacts it actively. This, however, is very unlikely. Because all new
nodes have the same contact, the view at the contact node gets updated extremely
frequently causing all the joining nodes to be quickly forgotten. A node hasto
push its own descriptor many times until some other node actually contacts it.

SEC. 3.4 GLOBAL RANDOMNESS 61

 0

 5

 10

 15

 20

 25

 30

 35

 40

 50 100 150 200 250 300

in
de

gr
ee

 s
ta

nd
ar

d
de

vi
at

io
n

cycles

growing scenario

tail, blind
rand, blind

tail, swapper
rand, swapper

tail, healer
rand, healer

 0

 5

 10

 15

 20

 25

 30

 35

 40

 50 100 150 200 250 300

cycles

random scenario

 0

 5

 10

 15

 20

 25

 30

 35

 40

 50 100 150 200 250 300

cycles

lattice scenario

Figure 3.3: Evolution of standard deviation of indegree in all scenarios ofpushpull
protocols.

This also means that if the network topology moves towards the shape of a star,
then the push protocols have extreme difficulty balancing this degree-distribution
state again towards a random one.

We conclude that this lack of adaptivity and robustness effectively renders
push-only protocols useless.In the remaining of this chapter we therefore con-
sider only the pushpull model.

Figure3.3 illustrates to convergence of the push-pull protocols. Note that the
average indegree is always the view sizeℓ. We can observe that in all scenarios
the protocols quickly converge to the same value, even in the case of the growing
scenario, in which the initial degree distribution is rather skewed. Other properties
not directly related to degree distribution also show convergence, as discussed in
Section3.4.2.

Static Properties

In this section we examine the converged degree distributions generated bythe dif-
ferent protocols. Figure3.4shows the converged standard deviation of the degree
distribution. We observe that increasing bothH and S results in a lower—and
therefore more desirable—standard deviation. The reason is differentfor these
two cases. With a largeS, links to a node come to existence only in a very con-
trolled way. Essentially, the only way new links to a node are created is by the
node itself injecting its own fresh node descriptor during communication. On the
other hand, with a largeH, the situation is the opposite. When a node injects a
new descriptor about itself, this descriptor is (exponentially often) copiedto other
nodes for a few cycles. However, one or two cycles later all copies areremoved

62 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 2 4 6 8 10 12 14

in
de

gr
ee

 s
ta

nd
ar

d
de

vi
at

io
n

S

rand, H=0
tail, H=0

rand, H=1
tail, H=1

rand, H=3
tail, H=3

rand, H=8
tail, H=8

rand, H=14
tail, H=14

random graph

Figure 3.4: Converged values of indegree standard deviation.

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100 120 140 160

pr
op

or
tio

n
of

 n
od

es
 (

%
)

indegree

rand, blind
tail, blind

rand, swapper
tail, swapper
rand, healer

tail, healer
random graph

 0.01

 0.1

 1

 10

 0 20 40 60 80 100 120 140 160

pr
op

or
tio

n
of

 n
od

es
 (

%
)

indegree

rand, blind
tail, blind

rand, swapper
tail, swapper
rand, healer

tail, healer
random graph

Figure 3.5: Converged indegree distributions on linear and logarithmic scales.

because they are pushed out by new links (i.e., descriptors) injected in themean-
time. So the effect that reduces variance is the short lifetime of the copies ofa
given link.

Figure 3.5 shows the entire degree distribution for the three vertices of the
design space triangle. We observe that the distribution ofswapper is narrower
than that of the random graph, whileblind has a rather heavy tail and also a
large number of nodes with zero or very few nodes pointing to them, which is not
desirable from the point of view of load balancing.

Dynamic Properties

Although the distribution itself does not change over time during the continu-
ous execution of the protocols, the behavior of a single node still needs to be

SEC. 3.4 GLOBAL RANDOMNESS 63

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 40 80 120 160 200

pr
op

or
tio

n
(%

)

indegree

rand, blind

one node over time
snapshot of network

 0

 2

 4

 6

 8

 10

 12

 10 15 20 25 30 35 40 45 50

pr
op

or
tio

n
(%

)

indegree

rand, swapper

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 10 20 30 40 50 60 70 80 90

pr
op

or
tio

n
(%

)

indegree

rand, healer

Figure 3.6: Comparison of the converged indegree distribution over the network at
a fixed time point and the indegree distribution of a fixed node during an interval
of 50,000 cycles. The vertical axis represents the proportion of nodesand cycles,
respectively.

determined. More specifically, we are interested in whether a given fixed node
has a variable indegree or whether the degree changes very slowly. The latter
case would be undesirable because an unlucky node having above-average degree
would continuously receive above-average traffic while others would receive less,
which results in inefficient load balancing.

Figure3.6compares the degree distribution of a node over time, and the entire
network at a fixed time point. The figure shows only the distribution for one node
and only the random peer selection protocols, but the same result holds for tail
peer selection and for all the 100 other nodes we have observed. Fromthe fact
that these two distributions are very similar, we can conclude that all nodes take
all possible values at some point in time, which indicates that the degree of a node
is not static.

However, it is still interesting to characterizehow quicklythe degree changes,
and whether this change is predictable or random. To this end, we presentauto-
correlation data of the degree time-series of fixed nodes in Figure3.7. The band
indicates a 99% confidence interval assuming the data is random. Only one node
is shown, but all the 100 nodes we traced show very similar behavior. Letthe
seriesd1, . . .dK denote the indegree of a fixed node in consecutive cycles, andd
the average of this series. The autocorrelation of the seriesd1, . . .dK for a given
time lagk is defined as

rk =
∑K−k

j=1 (d j −d)(d j+k−d)

∑K
j=1(d j −d)2

,

64 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

au
to

co
rr

el
at

io
n

of
 n

od
e

de
gr

ee

time lag (cycles)

tail, blind
rand, blind

tail, swapper
rand, swapper

tail, healer
rand, healer

99% confidence band

Figure 3.7: Autocorrelation of indegree of a fixed node over 50,000 cycles. Confi-
dence band corresponds to the randomness assumption: a random series produces
correlations within this band with 99% probability.

which expresses the correlation of pairs of degree values separated by k cycles.
We observe that in the case ofhealer it is impossible to make any prediction

for a degree of a node 20 cycles later, knowing the current degree. However, for
the rest of the protocols, the degree changes much slower, resulting in correlation
in the distance of 80-100 cycles, which is not optimal from the point of view of
load balancing.

3.4.2. Clustering and Path Lengths

Degree distribution is an important property of random graphs. However, there are
other equally important characteristics of networks that are independentof degree
distribution. In this section we consider theaverage path lengthand theclustering
coefficientas two such characteristics. The clustering coefficient is defined over
undirected graphs (see below). Therefore, we consider the undirected version of
the overlay after removing the orientation of the edges.

Average path length The shortest path length between nodea andb is the min-
imal number of edges required to traverse in the graph in order to reachb from
a. The average path length is the average of shortest path lengths over allpairs
of nodes in the graph. The motivation of looking at this property is that, in any
information dissemination scenario, the shortest path length defines a lower bound
on the time and costs of reaching a peer. For the sake of scalability a small av-
erage path length is essential. In Figure3.8, especially in the growing and lattice

SEC. 3.4 GLOBAL RANDOMNESS 65

 2.95

 3

 3.05

 3.1

 3.15

 3.2

 3.25

 50 100 150 200 250 300

av
er

ag
e

pa
th

 le
ng

th

cycles

growing scenario

 2.95

 3

 3.05

 3.1

 3.15

 3.2

 3.25

 0 50 100 150 200 250 300

cycles

random scenario

 2.95

 3

 3.05

 3.1

 3.15

 3.2

 3.25

 0 50 100 150 200 250 300

cycles

lattice scenario

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 50 100 150 200 250 300

cl
us

te
rin

g
co

ef
fic

ie
nt

cycles

growing scenario

tail, blind
rand, blind

tail, swapper
rand, swapper

tail, healer
rand, healer

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 50 100 150 200 250 300

cycles

random scenario

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 50 100 150 200 250 300

cycles

lattice scenario

Figure 3.8: Evolution of the average path length and the clustering coefficient in
all scenarios.

scenarios, we verify that the path length converges rapidly. Figure3.9 shows the
converged values of path length for the design space triangle defined byH andS.
We observe that all protocols result in a very low path length. LargeSvalues are
the closest to the random graph.

Clustering coefficient The clustering coefficient of a nodea is defined as the
number of edges between the neighbors ofa divided by the number of all possible
edges between those neighbors. Intuitively, this coefficient indicates theextent to
which the neighbors ofa are also neighbors of each other. The clustering coeffi-
cient of a graph is the average of the clustering coefficients of its nodes,and always
lies between 0 and 1. For a complete graph, it is 1, for a tree it is 0. The motiva-
tion for analyzing this property is that a high clustering coefficient has potentially
damaging effects on both information dissemination (by increasing the number
of redundant messages) and also on the self-healing capacity by weakening the

66 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 2 4 6 8 10 12 14

cl
us

te
rin

g
co

ef
fic

ie
nt

H

rand, S=0
tail, S=0

rand, S=3
tail, S=3

rand, S=8
tail, S=8

rand, S=14
tail, S=14

random graph

 2.95

 3

 3.05

 3.1

 3.15

 3.2

 0 2 4 6 8 10 12 14

av
er

ag
e

pa
th

 le
ng

th

H

Figure 3.9: Converged values of clustering coefficient and average path length.

connection of a cluster to the rest of the graph thereby increasing the probability
of partitioning. Furthermore, it provides an interesting possibility to draw paral-
lels with research on complex networks where clustering is an important research
topic (i.e., in social networks) [Watts and Strogatz 1998].

Like average path length, the clustering coefficient also converges (see Fig-
ure3.8); Figure3.9shows the converged values. It is clear that clustering is con-
trolled mainly byH. The largest values ofH result in rather significant clustering,
where the deviation from the random graph is large. The reason is that ifH is
large, then a large part of the views of any two communicating nodes will over-
lap right after communication, since both keep the same freshest entries. For the
largest values ofS, clustering is close to random. This is not surprising either
becauseScontrols exactly the diversity of views.

3.5. FAULT TOLERANCE

In large-scale, dynamic, wide-area distributed systems it is essential that a
protocol is capable of maintaining an acceptable quality of service under a wide
range of severe failure scenarios. In this section we present simulation results on
two classes of such scenarios:catastrophic failure, where a significant portion of
the system fails at the same time (e.g., due to network partitioning), and heavy
churn, where nodes join and leave the system continuously.

3.5.1. Catastrophic Failure

Failures on network backbones typically split a network in two or more disjoint
partitions of different geographic locations (e.g., nodes in Europe and nodes in

SEC. 3.5 FAULT TOLERANCE 67

 0.01

 0.1

 1

 10

 100

 65 70 75 80 85 90 95

av
er

ag
e

of

 n
od

es
 o

ut
si

de
 th

e
la

rg
es

t c
lu

st
er

removed nodes (%)

rand, blind
tail, blind
rand, healer
tail, healer
rand, swapper
tail, swapper
random graph

Figure 3.10: The number of nodes that do not belong to the largest connected
cluster. The average of 100 experiments is shown. The random graph almost
completely overlaps with the swapper protocols.

America), or administrative jurisdictions (e.g., nodes in ISPX and nodes in ISP
Y). Note that, from the point of view of each partition, partitioning appears as
if a large number of nodes (i.e., the ones belonging to a disjoint partition) died
altogether.

In this section we test the PEER SAMPLING SERVICE against partitioning fail-
ures. In fact, we focus on a single partition, and examine how it emerges after
partitioning has occurred. This is modeled by a catastrophic failure. More specifi-
cally, since our protocols are completely symmetric with respect to node locations,
partitioning is modeled as the removal of arandomsubset of the nodes at once.

As in the case of the degree distribution, the response of the protocols to a
massive failure has a static and a dynamic aspect. In the static setting we are
interested in the self-healing capacity of the converged overlays to a (potentially
massive) node failure, as a function of the number of failing nodes. Removing a
large number of nodes will inevitably cause some serious structural changes in the
overlay even if it otherwise remains connected. In the dynamic case we would like
to learn to what extent the protocols can repair the overlay after a severedamage.

The effect of a massive node failure on connectivity is shown in Figure3.10.
In this setting the overlay in cycle 300 of the random initialization scenario was
used as converged topology. From this topology, random nodes were removed
and the connectivity of the remaining nodes was analyzed. In all of the 100×
6 = 600 experiments performed we did not observe partitioning until removing
67% of the nodes. The figure depicts the number of the nodes outside the largest
connected cluster. We observe consistent partitioning behavior over allprotocol

68 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 10 100

pr
op

or
tio

n
of

 d
ea

d
lin

ks
 (

%
)

cycles

tail, blind
rand, blind

tail, swapper
rand, swapper

tail, healer
rand, healer

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12 14nu
m

be
r

of
 c

yc
le

s
to

 r
em

ov
e

al
l d

ea
d

lin
ks

S

rand, H=1
tail, H=1

rand, H=3
tail, H=3

rand, H=8
tail, H=8

rand, H=14
tail, H=14

Figure 3.11: Removing dead links following the failure of 50% of the nodes in
cycle 300.

instances (withswapper being particularly close to the random graph): even
when partitioning occurs, most of the nodes form a single large connectedcluster.
Note that this phenomenon is well known for traditional random graphs [Newman
2002].

In the dynamic scenario we made 50% of the nodes fail in cycle 300 of the
random initialization scenario and we then continued running the protocols onthe
damaged overlay. The damage is expressed by the fact that, on average, half of the
view of each node consists of descriptors that belong to nodes that are no longer
in the network. We call these descriptors dead links. Figure3.11shows how fast
the protocols repair the overlay, that is, remove dead links from the views.Based
on the static node failure experiment it was expected that the remaining 50% of
the overlay is not partitioned and indeed, we did not observe partitioning with
any of the protocols. Self-healing performance is fully controlled by the healing
parameterH, with H = 15 resulting in fully repairing the network in as little as 5
cycles (not shown).

3.5.2. Churn

To examine the effect of churn, we define an artificial scenario in which agiven
proportion of the nodes crash and are subsequently replaced by new nodes in
each cycle. This scenario is aworst casescenario because the new nodes are
assumed to join the system for the first time, therefore they have no information
whatsoever about the system (their view is initially empty) and the crashed nodes
are assumed never to join the system again, so the links pointing to them will
never become valid again. A more realistic trace-based scenario is also examined
in Section3.5.3using the Gnutella trace described in [Saroiu et al. 2003].

SEC. 3.5 FAULT TOLERANCE 69

We focus on two aspects: the churn rate, and the bootstrapping method. Churn
rate defines the number of nodes that are replaced by new nodes in eachcycle. We
considerrealisticchurn rates (0.1% and 1%) and acatastrophicchurn rate (30%).
Since churn is defined in terms of cycles, in order to validate how realistic these
settings are, we need to define the cycle length. With the very conservativesetting
of 10 seconds, which results in a very low load at each node, the trace described
in [Saroiu et al. 2003] corresponds to 0.2% churn in each cycle. In this light, we
consider 1% a comfortable upper bound of realistic churn, given also that the cycle
length can easily be decreased as well to deal with even higher levels of churn.

We examine two bootstrapping methods. Both are rather unrealistic, but our
goal here is not to suggest an optimal bootstrapping implementation, but to ana-
lyze our protocols under churn. The following two methods are suitable forthis
purpose because they represent two opposite ends of the design space:

Central We assume that there exists a server that is known by every joining node,
and that is stable: it is never removed due to churn or other failures. This
server participates in the gossip membership protocol as an ordinary node.
The new nodes use the server as their first contact. In other words, their
view is initialized to contain the server.

Random An oracle gives each new node a random live peer from the network as
its first contact.

Realistic implementations could use a combination of these two approaches, where
one or more servers serve random contact peers, using the PEER SAMPLING SER-
VICE itself. Any such implementation can reasonably be expected to result in a
behavior in between the two extremes described above.

Simulation experiments were run initializing the network with random links
and subsequently running the protocols under the given amount of churn until the
observed properties reach a stable level (300 cycles). The experimental results
reveal that for realistic churn rates (0.1% and 1%) all the protocols are robust to
the bootstrapping method and the properties of the overlay are very close tothose
without churn. Figure3.12 illustrates this by showing the standard deviation of
the node degrees in both scenarios, for the higher churn rate 1%. Observe the
close correspondence with Figure3.4. The clustering coefficient and average path
length show the same robustness to bootstrapping, and the observed values are
almost identical to the case without churn (not shown).

Let us now consider the damage churn causes in the networks. First of all, for
all protocols and scenarios the networks remain connected, even forH = 0. Still,
a (low) number of dead links remain in the overlay. Figure3.13shows the average
number of dead links in the views, again, only for the higher churn rate (1%). It is
clear that the extent of the damage is fully controlled by the healing parameterH.

70 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

 10

 12

 14

 16

 18

 20

 22

 0 2 4 6 8 10 12 14

de
gr

ee
 s

ta
nd

ar
d

de
vi

at
io

n

S

random bootstrapping

 10

 12

 14

 16

 18

 20

 22

 0 2 4 6 8 10 12 14

de
gr

ee
 s

ta
nd

ar
d

de
vi

at
io

n

S

central bootstrapping

rand, H=1
tail, H=1

rand, H=3
tail, H=3

rand, H=8
tail, H=8

rand, H=14
tail, H=14

Figure 3.12: Standard deviation of node degree with churn rate 1%. Nodedegree
is defined over theundirectedversion of the subgraph oflive nodes. TheH = 0
case is not comparable to the shown cases; due to reduced self-healing,nodes have
much fewer live neighbors (see Figure3.13) which causes relatively low variance.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 2 4 6 8 10 12 14

av
g.

 n
um

be
r

of
 d

ea
d

lin
ks

 p
er

 v
ie

w

S

random bootstrapping

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 2 4 6 8 10 12 14

av
g.

 n
um

be
r

of
 d

ea
d

lin
ks

 p
er

 v
ie

w

S

central bootstrapping

rand, H=1
tail, H=1

rand, H=3
tail, H=3

rand, H=8
tail, H=8

rand, H=14
tail, H=14

Figure 3.13: Average number of dead links in a view with churn rate 1%. The
H = 0 case is not shown; it results in more than 11 dead links per view on average,
for all settings.

SEC. 3.5 FAULT TOLERANCE 71

Furthermore, it is clear that the protocols are robust to the bootstrapping scenario
also in this case. IfH ≥ 1 then themaximal(not average) number of dead links
in any view for the different protocol instances ranges from 5−13 in the case of
churn rate 1% and from 2−5 for churn rate 0.1%, where the lowest value belongs
to the highestH. If H = 0 then the number of dead links radically increases:
it is at least 11 on average, and the maximal number of dead links ranges from
20-25 for the different settings. That is, in the presence of churn, it isessential
for any implementation to set at leastH = 1. We have already seen this effect in
Section3.5.1concerning self-healing performance.

Although the server participates in the overlay, the plots showing results under
the central bootstrapping scenario were calculated ignoring the server,because its
properties sharply differ from the rest of the network. In particular, ithas a high
indegree, because all new nodes will have a fresh link to the server, and that link
will stay in the view of joining nodes for a few more cycles, possibly replicated
in the meantime. Indeed, we observe that for 1% churn, 12%−28% of the nodes
have a link to the server at any time, depending onH andS. However, if we assume
that the server can handle the traffic generated by joining nodes, a high indegree
is non-critical. The expected number of incoming messages due to indegreed
is d/ℓ (whereℓ is the view length), with a very low variance. This means that
the generated traffic is of the same order of magnitude as the traffic generated by
the joining nodes. We note again however, that we do not consider this simplistic
server-based solution a practical approach; we treat it only as a worst-case scenario
to help us evaluate the protocols.

So far we have been discussing realistic churn rates. However, it is of aca-
demic interest to examine the behavior underextremelydifficult scenarios, where
the network suffers a catastrophic damagein each cycle. The catastrophic churn
rate of 30% combines the effects of catastrophic failure (see Section3.5.1) and
churn.

Unlike with realistic churn rates, in this case the bootstrapping method has
a strong effect on the performance of the protocols and therefore becomes the
major design decision, although the parametersH andS still have a very strong
effect as well. Consequently, we need to analyze the interaction of the gossip
membership protocol and the bootstrapping method. In the case of the server-
based solution, the overlay evolves into a ring-like structure, with a few shortcut
links. The reason is that the view of the server is predominantly filled with entries
of the newly joined nodes, since each time a new node contacts the server it also
places a fresh entry about itself in the view of the server. These entries are served
to the subsequently joining nodes, thus forming a linear structure. This ring-like
structure is rather robust: it remains connected (even after removing the server)
for all protocols withH >= 8. However, it has a slightly higher diameter than

72 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 2 4 6 8 10 12 14

si
ze

 o
f l

ar
ge

st
 c

on
ne

ct
ed

 c
lu

st
er

H

rand peer selection
tail peer selection

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2 4 6 8 10 12 14

de
gr

ee
 s

ta
nd

ar
d

de
vi

at
io

n

H

rand peer selection
tail peer selection

Figure 3.14: Size of largest connected cluster and degree standard deviation under
catastrophic churn rate (30%), with the random bootstrapping method. Individual
curves belong to different values ofSbut the measures depend only onH, so we do
not need to differentiate between them. Connectivity and node degree aredefined
over theundirectedversion of the subgraph oflive nodes.

that of the random graph (approximately 20-30 hops). Forhealer the average
number of dead links per view is still as low as 10 and 9 for random and tail peer
selection, respectively.

The random scenario is rather different. In particular, we lose connectivity
for all the protocols, however, for large values ofH the largest connected cluster
almost reaches the size of the network (see Figure3.14). Besides, the structure
of the overlay is also different. As Figure3.14shows, tail peer selection results
in a slightly more unbalanced degree distribution (note that the low deviation for
low values ofH is due to the low number of live nodes). The reason is that—also
considering that tail peer selection picks the oldestlive node—the nodes that stay
in the overlay for somewhat longer will receive more incoming traffic because
(due to the very high number of dead links in each view) they tend to be the oldest
live node in most views they are in. Forhealer the average number of dead
links per view is 11 and 9 for random and tail peer selection, respectively.

To summarize our findings: under realistic churn rates all the protocols per-
form very similarly to the case when there is no churn at all, independently of
the bootstrapping method. Besides, some of the protocol instances, in particu-
lar, healer, can tolerate even catastrophic churn rates with a reasonable perfor-
mance with both bootstrapping methods.

SEC. 3.5 FAULT TOLERANCE 73

3.5.3. Trace-driven Churn Simulations

In Section3.5.2we analyzed our protocols under artificial churn scenarios. Here,
we consider a realistic churn scenario using the, so called,lifetime measurements
on Gnutella, carried out by Saroiu et al.[Saroiu et al. 2003]. These traces contain—
among other information—the connection and disconnection times for a total of
17,125 nodes over a period of 60 hours. Throughout the trace, the number of
connected nodes remains practically unchanged, in the order of 104 nodes.

We noticed a periodic pattern occurring every 404 seconds in the traces.In
each 404-second interval, all connections and disconnections take place during the
first 344 seconds, rendering the network static during the last 60 seconds. These
recurring gaps would represent a positive bias for our churn simulations, as they
periodically provide the overlay with some “breathing space” to process recent
changes. However, these gaps are not realistic and are most probablyan artifact
of the logging mechanism. Therefore, we decided to eliminate them by linearly
expanding each 344 second interval to cover the whole 404 seconds. Note that
this transformation leaves the node uptimes practically unaltered.

We have taken the following two decisions with respect to the parameters in
the experiments presented. First, peer selection is fixed to random. Section3.5.2
showed that random is outperformed by tail peer selection in all cases. Therefore,
random is a suitable choice for this section as the worst case peer selectionpolicy.
Second, the swapping parameter,S, is fixed to 0. Section3.5.2showed thatS= 0
results in the highest (therefore worst) degree deviation, while it does not affect
the number of dead links.

We apply two join methods: central and random, as defined in Section3.5.2.
The only difference is that a reconnecting node still remembers the links it pre-
viously had, some of which may be dead at reconnection time. This facilitates
reconnection, but generally increases the total number of dead links.

The cycle length was chosen to be 1 minute. We anticipate that in reality the
cycle length will be shorter, resulting in lower churn per cycle. The choiceof a
cycle length close to the upper end of realistic values is intentional, and is aimed
at testing this specific gossip membership protocol under increased stress.

Figure3.15shows the node connections and disconnections as a percentage of
the current network size. Connections are shown as positive points, whereas dis-
connections as negative. Although we ran the experiments for the whole trace, we
focus on its most interesting part, namely cycles 2250 to 2750. Notice that at cycle
2367, around 450 nodes get disconnected at once and reconnect altogether 27 min-
utes later, at cycle 2394, probably due to a router failure. Similar temporary—but
shorter—group disconnections are observed later on, around cycles2450, 2550,
and 2650, respectively.

Let us now examine the way the overlay is affected by those network changes.

74 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

-6

-4

-2

 0

 2

 4

 6

 500 1000 1500 2000 2500 3000 3500

R
E

M
O

V
A

LS

 J
O

IN
S

cycles

-6

-4

-2

 0

 2

 4

 6

 2300 2400 2500 2600 2700

R
E

M
O

V
A

LS

 J
O

IN
S

cycles

Figure 3.15: Churn in the Saroiu traces. Full time span of 3600 one minute cycles
and zoomed in to cycles 2250 to 2750.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2300 2400 2500 2600 2700

av
g.

 n
um

be
r

of
 d

ea
d

lin
ks

 p
er

 v
ie

w

cycles

random bootstrapping

H=0 (blind)
from top down: H=1, H=3, H=15 (healer)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2300 2400 2500 2600 2700

av
g.

 n
um

be
r

of
 d

ea
d

lin
ks

 p
er

 v
ie

w

cycles

central bootstrapping

Figure 3.16: Average number of dead links per view, based on the SaroiuGnutella
traces. All experiments use random peer selection andS= 0.

Figure3.16 shows that the number of dead links is always kept at fairly small
levels, especially whenH is at least 1. As expected, the number of dead links
peaks when there are massive node disconnections and get back to normal quickly.
However, it is not affected by the observed massive node reconnections, because
these happen shortly after the respective disconnections, and the neighbors of the
reconnected nodes are still alive.

Two observations regarding the effect ofH can be made. First, higher values
of H result in fewer dead links per view, validating the analysis in Section3.5.2.
Second, higher values ofH trigger thefasterelimination of dead links. The peaks
caused by massive node disconnections are wider for lowH values, becoming
sharper asH grows higher. In fact, these two observations are related to each

SEC. 3.6 WIDE-AREA-NETWORK EMULATION 75

 6

 8

 10

 12

 14

 16

 18

 20

 22

 2300 2400 2500 2600 2700

de
gr

ee
 s

ta
nd

ar
d

de
vi

at
io

n

cycles

random bootstrapping

H=0 (blind)
from top down: H=1, H=3, H=8, H=15

 6

 8

 10

 12

 14

 16

 18

 20

 22

 2300 2400 2500 2600 2700

de
gr

ee
 s

ta
nd

ar
d

de
vi

at
io

n

cycles

central bootstrapping

Figure 3.17: Evolution of standard deviation of node degree based on theSaroiu
Gnutella traces. All experiments use random peer selection andS= 0.

other: in a persistently dynamic network, the converged average number of dead
links depends on the rate at which the protocol disposes of them.

Figure3.17shows the evolution of the node degree deviation. It can be ob-
served that forH ≥ 1 the degree deviation under churn is very close to the corre-
sponding converged values in a static network (see Figure3.4). ForH = 0 though,
the higher number of pending dead links affects the degree distribution more. Note
that both massive node disconnectionsandconnections disturb the degree devia-
tion, but in both cases a few cycles are sufficient to recover the originaloverlay
properties.

To recap our analysis, we have shown that even with a pessimistic cycle length
of 1 minute, all protocols forH ≥ 1 perform very similarly to the case of a stable
network, independently of the join method. Anomalies caused by massive node
connections or disconnections are repaired quickly.

3.6. WIDE-AREA-NETWORK EMULATION

Distributed protocols often exhibit unexpected behavior when deployed inthe
real world, that cannot always be captured by simulation. Typically, this isdue
to unexpected message loss, network and scheduling delay, as well as events tak-
ing place in unpredictable, arbitrary order. In order to validate the correctness
of our simulation results, we implemented our gossip membership protocols and
deployed them on a wide-area network.

We utilized the DAS-2 wide-area cluster as our testbed [DAS-2]. The DAS-2
cluster consists of 200 dual-processor nodes spread across 5 sites inthe Nether-

76 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

lands. A total of 50 nodes were used for our emulations, 10 from each site. Each
node was running a Java Virtual Machine emulating 200 peers, giving a total of
10,000 peers. Peers were running in separate threads.

Although 200 peers were running on each physical machine, communication
within a machine accounted for only 2% of the total communication. Local-
area and wide-area traffic accounted for 18% and 80% of the total, respectively.
Clearly, most messages are transferred through wide area connections. Note that
the intra-cluster and inter-cluster round-trip delays on the DAS-2 are in theorders
of 0.15 and 2.5 milliseconds, respectively. In all emulations, the cycle length was
set to 5 seconds.

In order to validate our simulation results, we repeated the experiments pre-
sented in Figures3.3 and3.8 of Section3.4, using our real implementation. A
centralized coordinator was used to initialize the node views according to the
bootstrapping scenarios presented in Section3.4.1, namelygrowing, lattice, and
random.

The first run of the emulations produced graphs practically indistinguishable
from the corresponding simulation graphs. Acknowledging the low round-trip
delay on the DAS-2, we ran the experiments again, this time inducing a 50 msec
delay in each message delivery, accounting for a round-trip delay of 100 msec on
top of the actual one. The results presented in this section are all based onthese
experiments.

Figure3.18shows the evolution of the in-degree standard deviation, cluster-
ing coefficient, and average path length for all experiments, using the samescales
as Figures3.3 and3.8 to facilitate comparison. The very close match between
simulation-based and real-world experiments for all three nodes of the design
space triangle allows us to claim that our simulations represent a valid approx-
imation of real-world behavior.

The small differences of the converged values with respect to the simulations
are due to the induced round-trip delay. In a realistic environment, view exchanges
are not atomic: they can be intercepted by other view exchanges. For instance, a
node having initiated a view exchange and waiting for the corresponding reply,
may in the meantime receive a view exchange request by a third node. However,
the view updates performed by the active and passive thread of a node are not
commutative. The presented results correspond to an implementation where we
simply ignored this problem: all requests are served immediately regardless ofthe
state of the serving node. This solution is extremely simple from a design point of
view but may lead to corrupted views.

As an alternative, we devised and implemented three approaches to avoid cor-
rupted views. In the first approach, a node’s passive threaddrops incoming re-
questswhile its active thread is waiting for a reply. In the second one, the node

SEC. 3.6 WIDE-AREA-NETWORK EMULATION 77

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250

in
de

gr
ee

 s
ta

nd
ar

d
de

vi
at

io
n

cycles

growing scenario

tail, blind
rand, blind

tail, swapper
rand, swapper

tail, healer
rand, healer

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250

cycles

random scenario

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250

cycles

lattice scenario

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 50 100 150 200 250

cl
us

te
rin

g
co

ef
fic

ie
nt

cycles

growing scenario

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 50 100 150 200 250

cycles

random scenario

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 50 100 150 200 250

cycles

lattice scenario

 2.95

 3

 3.05

 3.1

 3.15

 3.2

 3.25

 0 50 100 150 200 250

av
er

ag
e

pa
th

 le
ng

th

cycles

growing scenario

 2.95

 3

 3.05

 3.1

 3.15

 3.2

 3.25

 0 50 100 150 200 250

av
er

ag
e

pa
th

 le
ng

th

cycles

random scenario

 2.95

 3

 3.05

 3.1

 3.15

 3.2

 3.25

 0 50 100 150 200 250

av
er

ag
e

pa
th

 le
ng

th

cycles

lattice scenario

Figure 3.18: Evolution of in-degree standard deviation, clustering coefficient, and
average path length in all scenarios forreal-world experiments.

78 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

queues—instead of dropping—incoming requests until the awaited reply comes.
As a third approach, a node’s passive thread serves all incoming requests, but its
active threaddrops a replyif an incoming request intervened.

Apart from the added complexity that these solutions impose on our design,
their benefit turned out to be difficult or impossible to notice. Moreover, unde-
sirable situations may arise in the case of the first two: dropping or delaying a
request from a third node may cause that node to drop or delay, in turn, requests
it receives itself. Chains of dependencies are formed this way, which can render
parts of the network inactive for some periods. Given the questionable advantage
these approaches can offer, and considering the design overhead they impose, we
will not consider them further. Based on our experiments, the best strategy is sim-
ply ignoring the problem, which further underlines the exceptional robustness of
gossip-based design.

3.7. DISCUSSION

In this section we summarize and interpret the results presented so far. As
stated in the introductory section, we were interested in determining the proper-
ties of various gossip membership protocols, in particular their randomness,load-
balancing and fault-tolerance. In a sense, after we discussed in the lastsection
why certain results were observed, we discuss here what the results imply.

3.7.1. Randomness

We have studied randomness from two points of view: local and global. Local
randomness is based on the analogy between a pseudo random-number generator
and the PEER SAMPLING SERVICE as seen by a fixed node. We have seen that all
protocols return a random sequence of peers at all nodes with a good approxima-
tion.

We have shown, however, that there are important correlations betweenthe
samples returned at the different nodes, that is, the overlay graphs that the imple-
mentations are based upon are not random. Adopting a graph-theoretic approach,
we have been able to identify important deviations from randomness that aredif-
ferent for the several instances of our framework.

In short, randomness is approached best by the view selection methodswap-
per (H = 0,S= 15), irrespectively of the peer selection method. In general,
increasingH increases the clustering coefficient. The average path length is close
to the one of a random graph for all protocols we examined. Finally, withswap-
per the degree distribution has a smaller variance than that of the random graph.

SEC. 3.7 DISCUSSION 79

This property can often be considered “better than random” (i.e., from thepoint
of view of load balancing).

Clearly, the randomness required by a given application depends on the very
nature of that application. For example, the upper bound of the speed of reaching
all nodes via flooding a network depends exclusively on the diameter of thenet-
work, while other aspects such as degree distribution or clustering coefficient are
irrelevant for this specific question. Likewise, if the sampling service is used by a
node to draw samples to calculate a local statistical estimate of some global prop-
erty such as network size or the availability of some resources, what is needed
is that the local samples are uniformly distributed. However, it isnot required
that the samples are independent at different nodes, that is, we do notneed global
randomness at all; the unstructured overlay can have any degree distribution, di-
ameter, clustering, etc.

Load Balancing

We consider the service to provide good load balancing if the nodes evenlyshare
the cost of maintaining the service and the cost induced by the application of the
service. Both are related to the degree distribution: if many nodes point to a certain
node, this node will receive more sampling-service related gossip messages and
most applications will induce more overhead on this node, resulting in poor load
balancing. Since the unstructured overlays that implement the sampling service
are dynamic, it is also important to note that nodes with a high indegree become
a bottleneck only if they keep having a high indegree for a long time. In other
words, a node is in fact allowed to have a high indegree temporarily, for a short
time period.

We have seen that theblind view selection is inferior to the other alter-
natives. The degree distribution has a high variance (that is, there are nodes that
have a large indegree) and on top of that, the degree distribution is relatively static,
compared to the alternatives.

Clearly, the best choice to achieve good load balancing is theswapper view
selection, which results in an even lower variance of indegree than in the uniform
random graph. In general, the parameterS is strongly correlated with the variance
of indegree: increasingS for a fixedH decreases the variance. The degree distri-
bution is almost as static as in the case ofhealer, if H = 0. However, this is not
a problem because the distribution has low variance.

Finally, healer also performs reasonably. Although the variance is some-
what higher than that ofswapper, it is still much lower thanblind. Besides,
the degree distribution is highly dynamic, which means that the somewhat higher
variance of the degree distribution does not result in bottlenecks because the inde-
gree of the nodes change quickly. In general, increasingH for a fixed value ofS

80 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

also decreases the variance.

Fault Tolerance

We have studied both catastrophic and realistic scenarios. In the first category,
catastrophic failure and catastrophic churn was analyzed. In these scenarios, the
most important parameter turned out to beH: it is always best to setH as high
as possible. One exception is the experiment with the removal of 50% of the
nodes, whereswapper performs slightly better. However,swapper is slow in
removing dead links, so if failure can be expected, it is highly advisable to set
H ≥ 1.

In the case of realistic scenarios, such as the realistic (artificial) churn rates,
and the trace-based simulations, we have seen that the damaging effect is minimal,
and (as long asH ≥ 1) the performance of the protocols is very similar to the case
when there is no failure.

3.8. RELATED WORK

3.8.1. Membership Management Protocols

Most gossip protocols for implementing peer sampling are covered by our frame-
work: we mentioned these in Section3.2.2. One notable exception is [Allavena
et al. 2005] that we address here in a bit more detail. The protocol is as follows. In
each cycle, all nodes pull the full partial views fromF randomly selected peers. In
addition, they record the addresses of the peers initiating incoming pull requests
during the given cycle. The old view is then discarded and a new view is gener-
ated from scratch. In the most practical version, the new view is generated by first
adding the addresses of the incoming requests and subsequently filling the rest of
the view with random samples from the union of the previously pulledF views
without replacement.

Note the two features that are incompatible with our framework: the applica-
tion of F ≥ 1 (in our caseF = 1) and the asymmetry between push and pull, with
pull having a larger emphasis: only one entry—the initiator peer’s own entry—is
pushed. Note that it is common to allow forF ≥ 1 also in other proposals (e.g.,
[Eugster et al. 2003b]). In our framework, information exchange is symmetric, or
fully asymmetric, without a finer tuning possibility.

To compare this protocol with our framework, we implemented it and ran sim-
ulations using the scenarios presented in this chapter. The view size and network
size were the same as in all simulations, andF was 1, 2 or 3. The main con-
clusions are summarized below. The protocol class presented in [Allavena et al.

SEC. 3.8 RELATED WORK 81

2005] has some difficulty dealing with the scenarios when the initial network is
not random (the growing and lattice initializations, see Section3.4.1). ForF = 1
we consistently observed partitioning in the lattice scenario (which was otherwise
never observed in our framework). For the growing scenario, the protocols occa-
sionally get stuck in a local attractor where there is a star subgraph: a node with a
very high indegree, and a large number of nodes with zero indegree and1 as out-
degree. Apart from these issues, if we consider self-healing, load balancing and
convergence properties, the protocols roughly behave as if they wereinstances
in our framework using pushpull, with 0≤ H ≤ 1 andS= 0, with increasingF
tending towardsH = 1. Sinc1 e we have concluded that the “interesting” proto-
cols in our space have either a highH or a highS value, based on the empirical
evidence accumulated so far there is no urgent need to extend our framework to
allow for F > 1 or asymmetric information exchange. However, studying these
design choices in more detail is an interesting topic for future research.

With respect to membership management, not all proposed systems are gossip-
based. It is worth noting Moshe [Keidar et al. 2002], a distributed membership
management system that is based on a set of devoted servers. Each client regis-
ters the multicast group(s) it is interested in with one of several dedicated servers,
preferably one in the same local-area network. Each server maintains complete
knowledge of the membership information for the whole network. Membership
changes are reported to servers through a third-party notification service monitor-
ing the system. Upon a membership change, servers talk to each other to reach
a consensus regarding the current state of membership. Once the network stabi-
lizes and a consensus is reached, servers propagate to each client thecomplete
membership information of the groups it is subscribed for.

Moshe is designed for systems where the full view of multicast groups is re-
quired by all group members. It focuses on lowering the bandwidth used for
reaching an agreement among the servers, and for updating clients’ views. In that
respect, it is based on the assumption of a small, generally stable network, where
membership changes occur occasionally. It has been successfully tested on 50
nodes distributed across different continents. However, it is not clearwhether its
design would be suitable for internet-scale applications, for two reasons.First,
in internet-scale applications continuous membership change is the norm and the
network never comes to a stable state. Second, full view of group membership by
all nodes is practically infeasible for groups expanding to thousands or millions
of nodes.

In the following we summarize a number of other fields that are related to the
research presented in this chapter.

82 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

3.8.2. Complex Networks

The assumption of uniform randomness has only fairly recently become subject
to discussion when considering large complex networks such as the hyperlinked
structure of the WWW, or the complex topology of the Internet. Like social and
biological networks, the structures of the WWW and the Internet both followthe
quite unbalanced power-law degree distribution, which deviates strongly from that
of traditional random graphs. These new insights pose several interesting theoret-
ical and practical problems [Barab́asi 2002]. Several dynamic complex networks
have also been studied and models have been suggested for explaining phenom-
ena related to what we have described in this chapter [Dorogovtsev and Mendes
2002]. This related work suggests an interesting line of future theoretical research
seeking to explain our experimental results in a rigorous manner.

An interesting direction of graph theory research concernsexpander graphs.
A graph consisting ofN vertices is aβ−expanderif, for any subset of vertices
S, such that|S| < N/2, the number of links from nodes inS to the rest of the
nodes is at leastβ× |S|. Essentially, an expander graph defines a lower limit in
the number of outgoing links fromanysubset of the graph nodes, proportional to
the subset size. Expander graphs have a wide spectrum of applications, including
error-correction codes and probabilistically checkable proofs (PCPs). What makes
them attractive for computer networks is the fact that they are rich in short,disjoint
paths. This allows the establishment of virtual circuits along edge-disjoint paths,
avoiding link congestion.

The expander graphs of practical interest for computer networks arethe ones
with bounded node degrees. These graphs have been shown to possess desirable
properties regarding the existence of disjoint paths. A number of papershave
studied the relation between the expansion properties of a bound-degreeexpander
graph and the number of disjoint paths it can concurrently support [Peleg and Up-
fal 1987, 1989; Broder et al. 1994; Kleinberg and Tardos 1995; Kleinberg and
Rubinfeld 1996; Broder et al. 1997, 1999]. These papers have also suggested
polynomial-time algorithms based on random-walks for the discovery of such
paths, which are out of the scope of this dissertation. This related work is highly
relevant to our work, as it has been shown that regular random graphs are excel-
lent expanders [Frieze and Zhao 1999]. The PEER SAMPLING SERVICE could,
therefore, form the basis for building such expander graphs.

3.8.3. Unstructured Overlays

There are a number of protocols that are not gossip-based but that are poten-
tially useful for implementing peer sampling. An example is the Scamp proto-
col [Ganesh et al. 2003]. While this protocol is reactive and so less dynamic, an

SEC. 3.9 CONCLUDING REMARKS 83

explicit attempt is made towards the construction of a (static) random graph topol-
ogy. Randomness has been evaluated in the context of information dissemination,
and it appears that reliability properties come close to what one would see in ran-
dom graphs. Finally, some other protocols have also been proposed to achieve
randomness [Law and Sui 2003; Pandurangan et al. 2003], although not having
the specific requirements of the PEER SAMPLING SERVICE in mind.

3.8.4. Structured Overlays

A structured overlay [Rowstron and Druschel 2001a; Ratnasamy et al. 2001a; Sto-
ica et al. 2001] is by definition not dynamic so to utilize it for implementing the
PEER SAMPLING SERVICE random walks or other additional techniques have to
be applied [Zhong et al. 2005; King and Saia 2004]. Another example of this
approach is a method assuming a tree overlay [Kostić et al. 2003]. It is unclear
whether a competitive implementation can be given considering also the cost of
maintaining the respective overlay structure. More generally, structuredoverlays
have also been considered as a basic middleware service to applications [Dabek
et al. 2003]. Another issue in common with our own work is that graph-theoretic
approaches have been developed for further analysis [Loguinov et al. 2003]. van-
renesse.tocs.2003 [Renesse et al. 2003] needs also be mentioned as a hierarchical
(and therefore structured) overlay which although applies (non-uniform) gossip to
increase robustness and to achieve self-healing properties, does noteven attempt
to implement or apply a uniform PEER SAMPLING SERVICE. It was designed to
support hierarchical information aggregation and dissemination.

3.9. CONCLUDING REMARKS

Gossip protocols have recently generated a lot of interest in the research com-
munity. The overlays that result from these protocols are highly resilient tofail-
ures and high churn rates. The underlying paradigm is clearly appealingto build
large-scale distributed applications.

This chapter factored out the abstraction implemented by the membership
mechanism underlying gossip protocols: the PEER SAMPLING SERVICE. The
service provides every peer with (local) knowledge of the rest of system, which is
key to have the system converge as a whole towards global properties using only
local information.

We described a framework to implement a reliable and efficient PEER SAM -
PLING SERVICE. The framework itself is based on gossiping. This framework
is generic enough to be instantiated with most current gossip membership proto-
cols[Eugster et al. 2003b; Jelasity et al. 2003; Stavrou et al. 2004; Voulgaris et al.

84 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

2005]. We used this framework to empirically compare the range of protocols
through simulations based on synthetic and realistic traces as well as implemen-
tations. We point out the very fact that these protocols ensure local randomness
from each peer’s point of view. We also observed that as far as the global prop-
erties are concerned, the average path length is close to the one in randomgraphs
and that clustering properties are controlled by (and grow with) the parameter H.
With respect to fault tolerance, we observe a high resilience to high churnrate and
particularly good self-healing properties, again mostly controlled by the parameter
H. In addition, these properties mostly remain independent of the bootstrapping
approach chosen.

In general, when designing gossip membership protocols that aim at random-
ness, following a push-only or pull-only approach is not a good choice.Instead,
only the combination results in desirable properties. Likewise, it makes senseto
build in robustness by purposefully removing old links when exchanging views
with a peer. This situation corresponds in our framework to a choice forH > 0.

Regarding other parameter settings, it is much more difficult to come to gen-
eral conclusions. As it turns out, tradeoffs between, for example, loadbalancing
and fault tolerance will need to be made. When focusing on swapping links with a
selected peer, the price to pay is lower robustness against node failuresand churn.
On the other hand, making a protocol extremely robust will lead to skewed inde-
gree distributions, affecting load balancing.

To conclude, we demonstrated in this extensive study that gossip member-
ship protocols can be tuned to both support high churn rates and providegraph-
theoretic properties (both local and global) close to those of random graphs so
as to support a wide range of applications. A complementary research direction
would be to explore this spectrum theoretically.

CHAPTER 4

From Randomness to Structure:
V ICINITY

In the previous chapters we explored gossiping as a means to create randomness.
We are now taking a shift and investigate how gossiping can be harnessedto create
structure.

A crucial issue in nearly all distributed systems is the way nodes interact with
each other. In particular, it is the “network of acquaintances” that determines the
flow of communication, and plays a significant role in the overall system’s be-
havior. Unlike some distributed systems, such as the PEER SAMPLING SERVICE,
which impose no preference onwhichpairs of nodes to link, a number of systems
entail a specific organization of nodes in certain topologies.

Distributed systems that impose a certain organization on nodes include two
main classes. First,structureddistributed systems, where nodes are linked in a
well-defined and deterministic way, according to some property such as theirID,
their position, etc. Distributed Hash Tables form a typical example of this class.
The second class involves the group ofunstructuredoverlays that exhibit some
loose form of organization. In these systems, the connectivity of nodes isnot
strictly mandated, nevertheless certain links are favored over others. Anexample
of this class are systems that cluster nodes demonstrating some sort of relationship
or similarity, to enhance peer collaboration. In a file-sharing system for instance,
forming links between nodes of similar interests can dramatically boost the abil-
ity to find requested files. It should be noted that, semantic clustering for the
file-sharing scenario gave us the initial stimulation leading to the conception and
development of the research presented in this chapter, and will be further studied
in Chapter7.

A number of customized solutions exist for individual applications. This can
be seen, for instance, in Distributed Hash Tables [Rowstron and Druschel 2001a;

86 FROM RANDOMNESS TOSTRUCTURE: V ICINITY CHAP. 4

Zhao et al. 2001; Stoica et al. 2001; Ratnasamy et al. 2001a]. Each of them em-
ploys its own, tailored-made mechanism to build and maintain its specific struc-
ture.

In this chapter we present agenerictopology construction framework, suit-
able for the construction of a large set of topologies. Through our framework,
nodes flexibly and efficiently self-organize in a completely autonomous fashion
to a largely arbitrary structure. Such structures may include semantic-based over-
lays, super-peer topologies, structured overlays such as rings, DHTs, etc., or var-
ious other types of topologies. Among the advantages of our approach are its
generic applicability, its flexibility, and its simplicity. Note that some other work
has been proposed along these lines, namely T-Man [Jelasity and Babaoglu 2005,
2006, 2004], which is further discussed in the related work section (4.8).

4.1. DESIGN PREAMBLE

The problem we are faced with is aP2P topology constructionproblem, namely
the construction of overlays representing relationships between nodes.Nodes
demonstrating a strong relationship should be grouped in highly clustered commu-
nities. That is, they should either be directly linked to each other, or be reachable
via a small number of intermediate—also related—nodes. Nodes of composite
interests may form links to multiple communities. In fact, communities’ bound-
aries need not be strict, and the very notion of communities may be a bit fuzzy.
Rather than partitioning the network in well-defined, isolated groups, we aim at
forming a continuous mosaic of interconnected communities. In such an overlay,
peers lying within a node’s close vicinity are likely to be related to that node and
among themselves. Such clustering of nodes may be required in the context of
some application, such as the ones presented in Chapters6, 7, and8.

However, to handle dynamics requires the discovery and propagation ofchanges
that may happenanywherein the network. For this reason, overlay networks
should also reflect desirable properties of random graphs and complexnetworks
in general [Albert and Barab́asi 2002; Newman 2002]. These two conflicting de-
mands generally lead to complexity when integrating solutions into a single pro-
tocol.

Protocols for topology construction in peer-to-peer networks should separate
these concerns. In particular, we advocate that when it comes to organizing nodes
in a relationship-based overlay, links between nodes should be optimal with re-
spect to their relationships only, regardless of any other desirable property of the
resulting overlay. Instead, a separate protocol should be used to handle network
dynamics, and provide up-to-date information that will allow proper adjustments

SEC. 4.2 THE TOPOLOGYCONSTRUCTIONFRAMEWORK 87

in links, and thus leading to adjustments in the overlay network itself.

4.2. THE TOPOLOGY CONSTRUCTION FRAMEWORK

Per our discussion above, we suggest a topology construction framework com-
posed of two layers. The top layer consists of a gossip-based protocol,V ICINITY ,
that strives to optimize links with respect to the target structure. The bottom layer
comprises the PEER SAMPLING SERVICE, studied in Chapter3. It maintains the
overlay connected in the face of node churn and failures, and feeds the top layer
with network changes.

In this section we introduce our model, describe how target topologies are
expressed, and justify the two-layered approach.

4.2.1. Model Outline

We assume a connected network infrastructure, supporting routing between any
two nodes. Each node maintains a dynamic list of neighbors, called its VICINITY

view Vvic, of fixed small length. Theview length, ℓvic, is the same for all nodes.
Knowledge regarding neighbors is stored and exchanged by means ofnode

descriptors. A given node’s descriptor can only be created by that node exclu-
sively. A node descriptor referring to peerP is a tuple containing the following
three fields:

1. P’s contact information (i.e., network address and port)

2. A numericagefield

3. P’s application-specificprofile

Note that a VICINITY node descriptor is essentially a CYCLON node descriptor
augmented by the node’s application-specific profile. As we will see, a node’s
profile determines its neighbors in the target structure.

The goal is to organize all VICINITY views so as to approximate the target
structure as closely as possible. To this end, nodes regularly exchangenode
descriptors to gradually evolve their views towards the target. When gossiping,
nodes send each other a subset of their views, of fixed small lengthgvic, known as
thegossip length. The gossip length is the same for all nodes.

4.2.2. The Selection Function

We consider aselection function S(k,P,D), that, given the descriptor of peerP
and a setD of peer descriptors, returns the set ofk descriptors (or all of them,

88 FROM RANDOMNESS TOSTRUCTURE: V ICINITY CHAP. 4

if |D| < k) that best approximateP’s outgoing links in the target structure. The
selection is based on node profiles. We assume functionS to be globally known
by all nodes in the system.

The selection function essentially defines the target structure. Each peerP
aims at eventually establishing links to the “best”ℓvic peers, as defined by the
outcome ofS(ℓvic,P,D∗P), whereD∗P is the set of descriptors of all nodes in the
network excludingP.

Often, the selection functionS is based on a globally defined peer proximity
metric. That is,S(k,P,D) sorts all descriptors inD with respect to their proximity
to peerP, and selects thek closest ones. Typical proximity metrics include seman-
tic similarity, ID-based sorting, domain name proximity, geographic- or latency-
based proximity, etc. Some applications may apply composite proximity metrics,
combining two or more of the above. In certain cases, though, selecting appropri-
ate neighbors involves more than a mere sorting based on some metric, typically
when a peer’s significance as a neighbor depends not only on the peer’s proximity
to a given node, but also on whichotherpeers are being selected.

We assume that the selection functionS exhibits some sort oftransitivity, in

the sense that if nodeP2 is a “good” selection for nodeP1 (P1
S

99K P2), andP3 is a

“good” selection forP2 (P2
S

99K P3), thenP3 tendsto be a “good” selection forP1

too (P1
S

99K P3). Generally, the “better” a selection nodeQ is for nodeP, the more
likely it is that Q’s “good” selections are also “good” forP.

This transitivity is essentially a correlation property between nodes sharing
common neighbors, embodying the principle “my friend’s friend is also my friend”.
Surely, this correlation is fuzzy and generally hard to quantify. It is more of a de-
sired property rather than a hard requirement for our topology construction frame-
work. The framework excels for networks exhibiting strong transitivity. However,
its efficiency degrades as the transitivity becomes weaker. In the extreme case that
no correlation holds between nodes with common neighbors, related nodes even-
tually discover each other through random encounters, although this may take a
long time.

4.2.3. Design Rationale

From our previous discussion, we are seeking a means to construct, foreach node
and with respect to the given selection function, the optimal view from all nodes
currently in the system. There are two sides to this construction.

First, based on the assumption of transitivity in the selection functionS, a peer
should explore the nearby peers that its neighbors have found. In other words, ifP2

is in P1’s V ICINITY view, andP3 is in P2’s view, it makes sense to check whether
P3 would also be suitable as a neighbor ofP1. Exploiting the transitivity inS

SEC. 4.3 THE TOPOLOGYCONSTRUCTIONFRAMEWORK 89

Vicinity
(related nodes)

Peer Sampling
(random nodes)

Figure 4.1: The two-layered framework

should then quickly lead to high-quality views. The way a node tries to improve
its VICINITY view resembleshill-climbing algorithms. However, instead of trying
to locate a single optimal node, here the objective is to optimize the selection of a
whole set of nodes, namely the view. In that respect, VICINITY can be thought of
as a distributed, collaborative hill-climbing algorithm.

Second, it is important thatall nodes are examined. The problem with follow-
ing transitivity alone is that a node will be eventually searching only in a single
cluster of related peers, possibly missing out on other clusters of also related—but
still unknown—peers, in a way similar to getting locked in a local maximum in
hill-climbing algorithms. Analogously to the special “long” links in small-world
networks [Watts 1999], a node needs to establish links outside its neighborhood’s
cluster. Likewise, when new nodes join the network, they should easily findan
appropriate cluster to join. These issues call for a randomization of candidates for
including in a view.

In our design we decouple these two aspects by adopting a two-layered set
of gossip protocols, as can be seen in Figure4.1. The lower layer is the PEER

SAMPLING SERVICE, responsible for maintaining a connected overlay and for pe-
riodically feeding the top-layer protocol with nodes uniformly randomly selected
from the whole network. In its turn, the top-layer protocol, called VICINITY , is
in charge of discovering peers that are favored by the selection function. Each
layer maintains its own, separate view, and communicates to the respective layer
of other nodes, as shown in Figure4.2.

90 FROM RANDOMNESS TOSTRUCTURE: V ICINITY CHAP. 4

Peer P
Peer P’

(related to P)
Peer R

(Random)

Vicinity
(related nodes)

Peer Sampling
(random nodes)

Vicinity
(related nodes)

Peer Sampling
(random nodes)

Vicinity
(related nodes)

Peer Sampling
(random nodes)

gossip

gossip

Figure 4.2: Communication in the two-layered framework. Each layer gossipsto
the respective layer of other nodes.

4.3. THE VICINITY PROTOCOL

V ICINITY employs periodic gossiping in a way similar to CYCLON. The key
difference lies in the selection ofwhichdescriptors to keep in one’s view following
a view exchange. Unlike CYCLON, in V ICINITY nodes do notswapneighbors
when gossiping. They, instead,sendeach other a few descriptors, and each of
them decides independently which ones to keep and which to discard to optimize
its own view. As mentioned in Section4.2.1, the number of descriptors sent is
defined by the gossip lengthgvic, and is the same for all nodes. The decision on
which links to send is based upon the selection functionS.

Like in CYCLON, nodes initiate view exchanges periodically, yet not synchro-
nized. Each nodeP initiates gossiping once everyT time units, by executing the
following nine steps:

1. Increase the age of each neighbor by one.

2. Select neighborQ with the highest age among all neighbors, and remove it
from the VICINITY view: Vvic = Vvic−{Q}.

3. Merge the VICINITY and PEER SAMPLING SERVICE views in one:VP =
Vvic

S

Vpss.

4. Add own descriptor with own profile and age 0 to the merged view:VP =
VP

S{P}.

5. Strip downVP to its gvic best descriptors forQ, by applying the selection
function fromQ’s perspective:VP = S(gvic,Q,VP).

SEC. 4.4 THE V ICINITY PROTOCOL 91

do forever
{
wait(T time units)
incr. all descriptors’ age by 1
Q ← selectPeer()
remove Q from view
buf_send ← selectToSend()
send buf_send to Q
receive buf_recv from Q
view ← selectToKeep()

}

do forever
{
receive buf_recv from Q
buf_send ← selectToSend()
send buf_send to Q
view ← selectToKeep()

}

Active thread Passive thread

Figure 4.3: The generic gossiping skeleton for CYCLON and VICINITY .

6. SendVP to peerQ.

7. Similarly, receiveVQ from peerQ, containing a set of (up to)gvic descriptors
known byQ, optimally selected forP.

8. Merge the VICINITY , PEER SAMPLING SERVICE, and received views in
one:V = Vvic

S

Vpss
S

VQ.

9. Rebuild the VICINITY view by selecting the bestℓvic neighbors fromV:
Vvic = S(ℓvic,P,V).

The receiving nodeQ executes all steps from3 on in a symmetric way. Note that
when merging views (steps3 and8), in the presence of multiple descriptors of the
same node only the one with the lowest age is kept.

Each node essentially runs two threads. Anactive one, which periodically
wakes up and initiates communication to another peer, executing steps 1 through
9. Another thread, apassiveone, responds to the communication initiated by
another peer, and executes steps 3 through 9.

Note that the VICINITY protocol can also be modeled by the generic gossiping
skeleton we introduced for CYCLON (see Fig.2.2). Figure4.3 reproduces the
same skeleton here for convenience. Figure4.4 lists the description of each hook
of the skeleton, for the VICINITY protocol.

92 FROM RANDOMNESS TOSTRUCTURE: V ICINITY CHAP. 4

Hook Action taken
selectPeer() Select descriptor with the oldest age
selectToSend() Merge the VICINITY and PEER SAMPLING SERVICE

views.
Add own descriptor with own profile and age 0.
Select the bestgvic descriptors forQ.

selectToKeep() Merge the VICINITY , PEER SAMPLING SERVICE, and
received views.
Select the bestℓvic descriptors forP.

Figure 4.4: Implementation of the generic gossiping skeleton hooks, for the
V ICINITY protocol.

4.4. DISCUSSION ON THE DESIGN CHOICES

A number of interesting design choices are veiled behind VICINITY ’s 9 simple
steps.

To start with, we use thetail peer selectionpolicy, as defined in Section3.2.3.
That is, nodes always select their neighbor with the highest age to gossipwith.
The motive behind this policy is twofold. First, in a way similar to CYCLON, it
serves garbage collection of obsolete node descriptors. A descriptor may become
obsolete as a result of network dynamics, either because the node it pointsat is no
longer alive, or because new—“better”—neighbors have been discovered, pushing
that descriptor off the list with theℓvic optimal neighbors. Getting back to the
protocol, when—in step2—nodeP picks neighborQ with the highest age inP’s
view, it alsoremoves Qfrom its view. If Q is alive, it generates a new descriptor
with age 0 when executing step4, and sends it back toP in step7. At step9,
nodeP reestablishes a fresh link toQ, if the latter still qualifies as one of the best
ℓvic neighbors. If not, or ifQ has not responded at all, it simply remains out of
P’s V ICINITY view, essentially having been garbage collected. Selecting always
the neighbor with highest age to gossip with, ensures that no obsolete neighbor
lingers indefinitely in a node’s view.

The second reason for adopting tail peer selection, is that it imposes a round-
robin-like screening of a node’s neighbors. After a node’s oldest neighbor has
been contacted for gossiping, its new descriptor—if it remains a neighbor at all—
has age 0, that is, it has the lowest priority among all neighbors in being contacted
for a future gossip exchange. Consequently, a node rotates through itsview, con-
tacting its neighbors in a roughly circular order. This improves a node’s chances
to optimize its view faster, by increasing the number ofdifferentpotentially good

SEC. 4.5 OUTLINE OF EVALUATION 93

neighbors the node encounters. It is not hard to envisage that probinga single
neighbor multiple times in a short time frame has little value, as the neighbor is
unlikely to have new useful information to trade every time. In contrast, maxi-
mizing the intervals at which a given neighbor is probed, maximizes the potential
utility of each gossip exchange. Given the rather static nature of a node’sV ICIN-
ITY view (contrary to a PEER SAMPLING SERVICE view), this is achieved by
visiting neighbors in a round-robin fashion. Our experiments during the initial
development of VICINITY have shown this effect.

Another point deserving attention is the role of the PEERSAMPLING SERVICE

layer, and the way it interacts with VICINITY . Its contribution comes about in two
places: In steps3 and8, descriptors from the PEER SAMPLING SERVICE view are
incorporated as candidates for being sent to the other peer, and for being selected
for the node’s updated VICINITY view, respectively.

In essence, the PEERSAMPLING SERVICE offers an alternative source of links
to randomly chosen nodes all over the network. These random links are crucial
for target topologies splitting the network in separate, disjoint clusters. In the
converged state of such an overlay, every node’s VICINITY links point at nodes
within the same cluster. A new node that happens to be connected in a wrong
cluster (e.g., a newly joined node) would be “trapped” in that cluster unlessran-
dom links existed to nodes outside that cluster. Even for target topologies that
consist of a single, connected cluster, random links play an important role. When
such a network is converged, each node’s VICINITY links point at peers close to
its nearby neighborhood. A newly joined node that joins at a random nodeaway
from its neighborhood, will take a large number of steps to slowly “crawl” to its
target position. However, if random links are available, it is very likely to find
some suitable long-range links to “fly” him quickly close to its neighborhood.

In the following section we will demonstrate the importance of the random
links provided by the PEER SAMPLING SERVICE, both for connected and clus-
tered target topologies.

4.5. OUTLINE OF EVALUATION

In this section we will explain how we evaluate the topology construction
framework, and present the experimental setting.

4.5.1. Selection of Test Cases

Our topology construction framework constitutes a generic substrate for topology-
oriented self-organization. As already mentioned, a multitude of topologies can be
constructed by setting the appropriate selection function. A number of examples

94 FROM RANDOMNESS TOSTRUCTURE: V ICINITY CHAP. 4

are given in the chapters of Part II of this dissertation. The structuring efficiency of
our framework is related to the profiles of a given node population and the specifics
of the respective selection function and target topology. As a consequence, it
is infeasible to provide an exhaustive evaluation of the framework. Instead, the
evaluation of the framework for each specific application is left for the respective
chapters.

Nonetheless, in this chapter we will attempt to demonstrate our framework’s
operation by focusing on two test cases underlining its two key functions: first, to
gradually improve views of nodes by consulting their nearby neighbors; second,
to keep an eye all over the network, in search of related nodes.

Along these lines, we focus on the following two test cases:

Forming a 2-D Spatial Grid Nodes are assigned two-dimensional coordinates,
and their goal is to establish links to their closest neighbors. Building the
target topology in this test case is primarily based on the Euclidean prox-
imity heuristic. Quite informally, the general idea is that nodes gradually
improve their views with closer neighbors, which they then probe to find
new, even closer neighbors, eventually reaching their closest ones. This
emphasizes the utility of the top layer, VICINITY .

Clustering Nodes in Groups In this test case, nodes are split up in uncorrelated
groups. Each node’s goal is to cluster with other nodes of the same group.
The key difference with the previous test case is that nodes cannot gradually
connect to groups “closer” to their own, as there is no notion of proximity
between groups. Finding a node of the same group can be accomplished
only by means of random encounters, which highlights the role of the lower
layer, the PEER SAMPLING SERVICE.

Both test cases are definitely artificial scenarios, selected to demonstrate the
individual contribution of each layer. In most real applications, though,such as
semantic-based clustering (Chapter7) and the SUB-2-SUB publish/subscribe sys-
tem (Chapter8), both proximity and random heuristics are equally important for
efficient self-organization, rendering the combination of the two layers critical.

4.5.2. Generic Experimental Settings

Although VICINITY is not a synchronous protocol, it is convenient to study the
evolution of its behavior in time by means ofcycles. Just like in CYCLON, as well
as the generic model of the PEER SAMPLING SERVICE, a cycle is defined as the
time period during which every node initiates gossiping exactly once, and, there-
fore, coincides with the gossiping period∆T. To further simplify our analysis, in
our experiments we set the same gossiping period for both the PEER SAMPLING

SEC. 4.6 TEST CASE A: FORMING A 2-D SPATIAL GRID 95

SERVICE and VICINITY protocols. Therefore, a cycle is the time period during
whicheachnode initiates exactlyonegossip exchangeper protocol.

Given that establishing random links among nodes is a trivial task for the PEER

SAMPLING SERVICE irrespectively of the bootstrapping method (see Chapter3),
we bypass this step and start our experiments with nodes already having random
links. More specifically, in all experiments presented in this chapter, both views
of each node were initially filled up with descriptors of random other nodes,all
with age 0. Such an initialization provides uniformity in the conditions for our
experiments, and shields the experiments from behavior irrelevant to VICINITY .

Regarding the PEER SAMPLING SERVICE in the lower layer, we chose to
use CYCLON. CYCLON forms an excellent choice for the topology construction
framework, as it results in low correlation between the neighbors of a given node
(low clustering), which, in turn, maximizes the randomness of the new neighbors
received in each gossip exchange.

Finally, all experiments presented in this chapter were carried out with the
PeerSim open source simulator for peer-to-peer protocols [PeerSim].

4.6. TEST CASE A: FORMING A 2-D SPATIAL GRID

We consider a two-dimensional space. We assign each node(x,y) coordinates,
such that they are (virtually) aligned in a regular square grid organization. A
node’s coordinates constitute its profile. Each node’s goal is to establish links to
its four closest neighbors, to the north, south, east, and west.

The natural choice of a selection function for such a target topology is one
that gives preference to neighbors spatially closer to the reference node. More
formally, we define the distance between two nodesP andQ, with coordinates
(xP,yP) and(xQ,yQ) respectively, to be their two-dimensional Euclidean distance:

dist(P,Q) =
√

(xP−xQ)2 +(yP−yQ)2

The selection functionS(k,P,D) sorts node descriptors inD by their Euclidean
distance to the reference nodeP, and returns thek closest ones.

4.6.1. Demonstration of Test Case A

To demonstrate test case A, we simulated a network of 2,500 nodes, forming a
50× 50 grid. Figure4.5 graphically illustrates the evolution of this overlay by
depicting its snapshots at different stages. We have arbitrarily chosen small view
lengths of 10 descriptors per protocol (ℓvic = ℓcyc = 10). We have also set the
gossip lengths to be equal to the view lengths (gvic = gcyc = 10). This decision

96 FROM RANDOMNESS TOSTRUCTURE: V ICINITY CHAP. 4

After 2 cycles After 5 cycles

After 10 cycles After 17 cycles

Figure 4.5: Snapshots depicting the evolution of a 2,500 node overlay, forming a
50×50 grid structure.

SEC. 4.6 TEST CASE A: FORMING A 2-D SPATIAL GRID 97

ℓvicinity ℓcyclon

V ICINITY /CYCLON 10 10
V ICINITY -alone 20 –
CYCLON-alone – 20

Figure 4.6: The three protocol settings we compare.

was arbitrary, but we opted for small view lengths to underline the framework’s
power in forming a topology efficiently, even when each node has a very small
number of links.

For clarity of the snapshots, only the best four outgoing links of each node’s
V ICINITY view are shown in Figure4.5, except for edge nodes (three links shown)
and corner nodes (two links shown). Note the existence of either one or two lines
between two connected nodes. This is because links are directed. A singleline
means a single link from one node to the other (directionality not shown). A
double line means that both nodes have established a link to each other. In the
completed target topology (last snapshot) all links are double.

As stated in Section4.5.2, node views were initialized with random links.
This clearly shows in the first snapshot of Figure4.5, taken only two cycles after
the experiment started. In the subsequent snapshots, it can be clearly seen that
random, long-range links are gradually being replaced by shorter links tocloser
neighbors. Already after 10 cycles, most nodes have accomplished theirgoal,
by having established links to their four closest neighbors. Even nodes that have
not yet discovered all four best neighbors, have established links to nodes just a
couple of hops away. After 17 cycles, all nodes are connected to their four best
neighbors. We say that the overlay has converged to the target topology.

4.6.2. Analysis of Test Case A

Having taken a glimpse at the way our framework swiftly builds the target grid
topology, let us now observe the experiment’s evolution more closely. Addition-
ally, in order to demonstrate each layer’s role in building the target topology,it
is interesting to also observe the structuring behavior when either one of thetwo
layers operates individually.

Along these lines, we consider two additional protocol settings, with only one
of the two layers being active at a time. We compare all three protocol settings
over the same overlays. To provide for a fair comparison to the initial experiment,
where each layer has a view size and gossip length of 10, the single-layersettings
are allotted a view size and gossip length of 20. This way, nodes maintain and ex-
change the same number of total links in all three settings. Figure4.6summarizes

98 FROM RANDOMNESS TOSTRUCTURE: V ICINITY CHAP. 4

the three protocol settings we compare.
To study an experiment’s progress, we record the number of target linksthat

have been established at the end of each cycle. Recall that a node’s target links
are the four links to its direct north, south, east, and west neighbors. Figure4.7(a)
shows the number of target links that havenotbeen placed yet, as a function of the
number of cycles elapsed. This initially accounts for 10,000 links (2,500 nodes×
4 target links), and gradually drops to zero. Similarly, Figures4.7(b) and4.7(c)
show the evolution of the same experiments for networks of 10K and 40K nodes,
respectively.

A number of observations can be made from these graphs. Most importantly,
we easily identify VICINITY as the primary component responsible for efficient
self-organization. More specifically, we see that CYCLON-alone performs several
orders of magnitude worse than the other two protocol settings, whose perfor-
mances are comparable to each other. This indicates that, for the given target
topology, the crucial element accelerating self-organization is VICINITY .

Let us now take a look at each protocol setting separately:

CYCLON -alone It is not hard to see why CYCLON-alone is so inefficient. A
node’s only hope to find a target link is if that link shows up in its CYCLON

view. The CYCLON view is periodically refreshed with random nodes from
the whole network. In other words, a node is fishing for target links at
blind. As expected, its time to converge increases significantly as the size
of the network grows, since the chance of finding a target link at random
diminishes.

V ICINITY -alone Consider now the VICINITY -alone setting. Like before, a node
discovers a target link once it shows up in its view, which is the VICINITY

view now. The crucial difference, though, is that a node’s VICINITY view
continuouslyimproves, as opposed to being random. In each cycle some
of a node’s VICINITY neighbors are replaced by neighbors at least as close
as the previous ones. This way, nodes gradually optimize their views, and
promptly reach their target neighbors.

A seemingly minor, yet important observation, is that the progress of VICIN-
ITY -alone slows down after some point, for any network size. This can be
explained as follows. In these experiments nodes are initialized with a few
random links all over the network. These links generally are long-range
links. Also, nodes start optimizing their views (by gossiping) simultane-
ously. Some of these nodes happen to have, or acquire through their neigh-
bors, long-range links that bring them quickly close to their target vicinity,
that is, help them find nodes with very close coordinates. Apparently this is
the case for the vast majority of nodes, as more than 90% of the target links

SEC. 4.6 TEST CASE A: FORMING A 2-D SPATIAL GRID 99

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100

cycles

 100 1000

m

is
si

ng
 li

nk
s

(li
ne

ar
)

(lo
ga

rit
hm

ic
)

Cyclon(20)
Vicinity(20)

Cyclon(10) + Vicinity(10)

(a) Grid of 2,500 nodes (50×50).

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100

cycles

 100 1000

m

is
si

ng
 li

nk
s

(li
ne

ar
)

(lo
ga

rit
hm

ic
)

(b) Grid of 10K nodes (100×100).

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100

cycles

 100 1000

m

is
si

ng
 li

nk
s

(li
ne

ar
)

(lo
ga

rit
hm

ic
)

(c) Grid of 40K nodes (200×200).

Figure 4.7: Evolution of topology construction for test case A.

100 FROM RANDOMNESS TOSTRUCTURE: V ICINITY CHAP. 4

are in place within the first 10 cycles (99% for the 2,500 node network).
As a side-effect, the number of long-range links drops dramatically. This
hinders the remaining few nodes that have not discovered their proximal
neighbors yet, from getting quickly in their respective vicinities. Instead,
they have to reach their target vicinities in many, small steps, “crawling” in
the almost converged overlay. The number of steps is related to the network
diameter, as can be seen in the graphs for different size networks.

V ICINITY /CYCLON Quite visibly, the combination of VICINITY and CYCLON

outperforms any of the two constituent protocols alone. In fact, its perfor-
mance comes very close to the performance of VICINITY -alone, except it
does not exhibit the sudden progress slowdown we discussed above.The ex-
planation comes straightforward from the relevant discussion. What causes
the slowdown in VICINITY -alone is the lack of long-range links. Here we
do not face this issue, as the CYCLON layer ensures the continuous exis-
tence of random, long-range links.

4.7. TEST CASE B: CLUSTERING NODES IN GROUPS

In this test case, we provide each node with agroup ID, which constitutes its
profile. The goal is to form clusters of nodes that share the same group IDs. From
a node’s perspective, the goal is to establish links to other nodes with the same
group ID.

Note the clear distinction between the terms group and cluster in the context
of this test case. Agroupis defined as the set of all nodes sharing a common group
ID. A clusteris a set of nodes forming a weakly connected (sub-)graph, that is, a
connected (sub-)graph considering the undirected version of links between nodes.
Nodes should self-organize into clusters, in such a way that clusters eventually
coincide with groups.

The only comparison operator defined on node profiles is equality of group
IDs. By comparing their profiles, nodes can tell whether they belong to the same
group or not. However, no other type of comparison or proximity metrics apply,
for example, we do not define any ordering of groups.

The selection functionS(k,P,D) is simple and straightforward. It starts by
selecting in a random sequence descriptors fromD whose group ID is the same
asP’s. If these are fewer thank, it continues by selecting randomly from the rest
of the descriptors.

SEC. 4.7 TEST CASE B: CLUSTERING NODES IN GROUPS 101

After 8 cycles After 12 cycles

After 18 cycles After 22 cycles

Figure 4.8: Snapshots depicting the evolution of a 2,500 node overlay clustering
in 100 groups of 25 nodes each.

102 FROM RANDOMNESS TOSTRUCTURE: V ICINITY CHAP. 4

4.7.1. Demonstration of Test Case B

Like in the demonstration of test case A, we demonstrate test case B by consider-
ing a network of 2,500 nodes. Each node runs VICINITY and CYCLON, both with
view lengths and gossip lengths 10 (ℓvic = ℓcyc = 10 andgvic = gcyc = 10). Nodes
are assigned group IDs such that a total of 100 groups exist, each having 25 nodes.

Figure4.8 presents a series of snapshots of the network, illustrating the evo-
lution of clustering. For presentation clarity, nodes are displayed in a 50×50 grid
organization, and all 25 nodes of any given group have been placed incontigu-
ous locations, forming a 5×5 sub-grid. We emphasize that the sole purpose of
this layout is to facilitate visual comprehension of clustering, while nodes arenot
aware of their position in this layout, but only of their group ID.

To avoid cluttering the graph, only 2 random outgoing VICINITY links of
each node are shown. However, links to nodes of different groups are drawn with
a strictly higher priority than those to the same group. Consequently, when a node
in Figure4.8appears to have no links to groups other than its own, it is guaranteed
thatall its VICINITY links point at nodes within its group.

As mentioned in Section4.5, nodes are initialized with random neighbors.
Indeed, after cycle 7 the network still seems to be dominated by random links
between different groups. Soon after that, though, the effect of clustering starts
becoming evident. Quite visibly, nodes of the same group start forming clusters.
Intergroup links are gradually being replaced by intragroup ones, leading (after
cycle 22) to a fully clustered overlay, where clusters perfectly match the respective
groups. At that point the construction of the target topology is completed.

4.7.2. Analysis of Test Case B

Similarly to the analysis of test case A in Section4.6.2, we investigate and com-
pare the performance of our two-layered framework to that of each component
acting individually. We run experiments for the same three protocol settings,as
listed in Figure4.6.

As stated already, a node’s goal is to get clustered with other nodes of its
group. This task is divided in two steps: first, discover the right cluster; second,
get well connected in it. VICINITY excels in the second. Through a single link to
the target cluster, a node rapidly learns and becomes known to additional nodes
in that cluster. It turns out that the crucial step in this test case is the first one:
discovering the target cluster. Along these lines, we quantify the progress of our
experiments by counting the number of nodes that have established at leastone
link to a node of their group.

Figure4.9 plots the complementary metric, that is, the number of nodes that
donothave any links to other nodes of their group yet, as a function of the number

SEC. 4.7 TEST CASE B: CLUSTERING NODES IN GROUPS 103

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100

cycles

 100 1000

no

de
s

no
t c

on
ne

ct
ed

 in
 r

ig
ht

 c
lu

st
er

(li
ne

ar
)

(lo
ga

rit
hm

ic
)

Cyclon(20)
Vicinity(20)

Cyclon(10) + Vicinity(10)

(a) Network of 2,500 nodes: 100 groups of 25 nodes.

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100

cycles

 100 1000

no

de
s

no
t c

on
ne

ct
ed

 in
 r

ig
ht

 c
lu

st
er

(li
ne

ar
)

(lo
ga

rit
hm

ic
)

(b) Network of 10K nodes: 400 groups of 25 nodes.

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100

cycles

 100 1000

no

de
s

no
t c

on
ne

ct
ed

 in
 r

ig
ht

 c
lu

st
er

(li
ne

ar
)

(lo
ga

rit
hm

ic
)

(c) Network of 40K nodes: 1600 groups of 25 nodes.

Figure 4.9: Evolution of topology construction for test case B.

104 FROM RANDOMNESS TOSTRUCTURE: V ICINITY CHAP. 4

After 1000 cycles

Figure 4.10: Snapshot of the overlay produced by VICINITY -alone. Some nodes
are still not connected to their group’s cluster after 1000 cycles, and they will
never be.

of cycles elapsed. The three graphs correspond to networks of size 2500, 10K, and
40K nodes. In each graph, the progress of all three protocol settings isplotted. In
all cases, groups consist of 25 nodes each, so we have 100, 400, and 1600 groups
in the networks of 2500, 10K, and 40K nodes, respectively.

The most significant observation is that, unlike test case A, the worst behavior
is now exhibited by VICINITY operating on its own. VICINITY -alone stops con-
verging after some point, failing to fully build the target structure. On the contrary,
the other two settings, namely, VICINITY /CYCLON and CYCLON-alone, perform
comparably to each other. This indicates that in this test case the key component
is CYCLON, or more generally, the PEER SAMPLING SERVICE.

Let us now elaborate on each protocol setting separately:

V ICINITY -alone Apparently, no matter how long VICINITY runs on its own,
some nodes never manage to discover their groups. This is also depicted
in Figure4.10, which shows a snapshot of the network with 2500 nodes,
after 1000 cycles of VICINITY -alone execution.

It is not hard to see why this happens. As nodes start clustering with other
nodes of the same group, the pool of intergroup links in the network shrinks

SEC. 4.7 TEST CASE B: CLUSTERING NODES IN GROUPS 105

significantly. In fact, this is accelerated by the absolute transitivity property
this selection function exhibits. Once a node forms a link and gossips to
another node of its group, chances are it will acquire links to more nodes
of the same group, rapidly trading its intergroup for intragroup links. In not
so many cycles, most nodes end up having neighbors from their own group
exclusively. Also, clusters start becoming self-contained, that is, their nodes
link among themselves, but not to nodes of other groups. Note that this
behavior matches the intentions of VICINITY .

The problem comes with nodes that have not come across other nodes of
their group early enough. If a node’s neighbors are all from other groups,
and these groups have already clustered into closed, self-contained clusters,
the node has no chances whatsoever to be handed a link to a node of its own
group, ever. A neighbor from such a self-contained foreign group can only
provide alternative neighbors of that same, foreign group. The node,thus,
finds itself in a dead end. Obviously, in our experiments a number of nodes
end up trapped outside their groups (see Fig.4.9).

This demonstrates the need of a source of random, long-range links, to pre-
vent such dead end scenarios. This role is undertaken by the PEER SAM -
PLING SERVICE.

CYCLON -alone When CYCLON operates alone, descriptors float around in a ran-
dom fashion. Coming across a node of the same group is purely a matter of
luck. As naive as it may seem, it is the only way to discover nodes of the
same group, since nothing but the equality operator is defined for comparing
the profiles of nodes.

Note that CYCLON-alone and VICINITY -alone perform comparably in the
beginning of each experiment. However, later on, the latter is hindered
by nodes being already clustered, and thus, not useful for providingfresh
information. CYCLON-alone does not suffer from this problem.

V ICINITY /CYCLON When we apply our framework in its normal form, that is,
V ICINITY and CYCLON combined, we get the best results.

The VICINITY /CYCLON protocol setting converges at a rate very similar to
CYCLON-alone, except for a number of cycles in the beginning of each ex-
periment, during which it converges faster. The explanation of this behavior
lies in the details of gossip exchanges in each setting, and is an interesting
topic to elaborate on.

In CYCLON-alone, when a node initiates a gossip exchange it contacts a
neighbor, and retrieves 20 new, random neighbors. Its chance to finda node

106 FROM RANDOMNESS TOSTRUCTURE: V ICINITY CHAP. 4

of its own group in these new neighbors, is roughly 20 over the network
size.

In V ICINITY /CYCLON, when a nodeP initiates gossiping it contactstwo
neighbors,Qc on account of CYCLON, andQv on account of VICINITY . It
retrieves 10 new neighbors from each of them, giving a total of 20, exactly
as many as in the CYCLON-alone case. FromQc, it retrieves 10 random
neighbors. FromQv, however, it retrieves the 10optimal descriptors out
of both its views. Thus, if a descriptor fromP’s group layeither in Qv’s
V ICINITY or Qv’s CYCLON view, it is guaranteed to be one of the 10 de-
scriptors sent fromQc back toP. As a consequence,P will acquire a neigh-
bor of its own group with a chance of roughly 30 over the network size,
which explains the faster convergence over CYCLON-alone. Later on, when
nodes start clustering per group, VICINITY views increasingly consist of
links to nodes of a single group. Their utility in providing links to a variety
of groups diminishes, andP’s chance of finding a neighbor from its group
drops to roughly 20 over the network size (10 random nodes fromQc, and
10 more from itsQv’s CYCLON links).

In this test case, we saw that the PEER SAMPLING SERVICE is essential to the
successful construction of target topologies that are clustered in disjoint groups.
In a more general sense, the PEER SAMPLING SERVICE is necessary to all target
topologies for which VICINITY alone could result in nodes becoming permanently
trapped in a non-optimal neighborhood.

The necessity of the PEER SAMPLING SERVICE layer becomes more evident
when new nodes join an already clustered network. Then, unless they happen to
join by chance to the right neighborhood directly, they will never manage to reach
it.

4.8. DISCUSSION AND RELATED WORK

In this chapter we presented a framework, by means of which networks can
self-organize into a given target topology. The target topology is expressed by
means of a selection function that selects which neighbors are optimal for each
node. The framework consists of two layers. The top layer, VICINITY , strives for
optimizing a node’s neighbors with respect to the selection function. The lower
layer, an instance of the PEER SAMPLING SERVICE, ensures that each node also
maintains some random neighbors.

The most significant advantages of the framework are that it is simple and
generic. Simple, because each node acts autonomously, performing a sequence
of simple steps and taking local decisions, without requiring the deployment of

SEC. 4.8 DISCUSSION ANDRELATED WORK 107

any dedicated infrastructure. Generic, because it is applicable to a wide variety
of target topologies, given the appropriate selection function. The applicability
of the framework will be demonstrated by some applications in Part II of this
dissertation, without, though, this being an exhaustive set of potential applications.

On the theoretic side, Kleinberg’s results on navigation in small-world net-
works are highly relevant to our work [Kleinberg 2000b, a, 2001, 2004]. Klein-
berg studied the qualitative properties of networks that optimize the effectiveness
of decentralized routing algorithms in discovering short paths between two nodes,
based exclusively on local routing decisions. He proved that for eachoverlay
there is a critical distribution of long-range links, that allow decentralized routing
algorithms construct routing paths of lengthO(logn). For all other long-range
link distributions, decentralized algorithms can only find asymptotically longer
routing paths. More specifically, in ak-dimensional lattice network, optimal navi-
gability is achieved when long-range links between nodes of lattice distancer are
established with probability proportional to 1/rk.

In principle, Kleinberg’s results are key to distributed topology construction,
as the joining of a new node is essentially a problem of navigating to its optimal
neighbors. Let alone that decentralized routing is often the purpose of the target
topology itself. In practice, however, these results are not applicable to our work
for two reasons. First, unlike our demonstration test cases in Sections4.6and4.7,
in most applications nodes are not laid out in a lattice structure (e.g., see applica-
tions in PartII). Second, in a number of applications distance is not meaningful
betweenall pairs of nodes (e.g., see test case B, Section4.7, and Chapter7). Nev-
ertheless, the combination of a number of random long-range links (provided by
the PEER SAMPLING SERVICE) with short-range links (provided by VICINITY)
appears to provide sufficient topology navigation for all applications presented in
PartII . A demanding application can improve its overlay’s navigational efficiency
by increasing the number of short- and long-range links maintained per node, even
if the efficiency achieved is not optimal for that number of links.

Other work aiming at self-organizing a network to a certain topology has con-
centrated on solutions tailored for very specific problems. Distributed HashTa-
bles [Rowstron and Druschel 2001a; Zhao et al. 2001; Stoica et al. 2001; Rat-
nasamy et al. 2001a] are such an example, as each of them includes its own, cus-
tomized technique for building the respective overlay.

The only other research our work comes close to, is the T-Man protocol [Je-
lasity and Babaoglu 2005, 2006], which has been developed independently. Al-
though there were significant differences with the original T-Man protocol [Jela-
sity and Babaoglu 2004], the most recent version shows a strong similarity with
our work. A difference remains that T-Man employs therandom peer selection
policy, as opposed to the tail policy used in our work. The benefits of tail peer

108 FROM RANDOMNESS TOSTRUCTURE: V ICINITY CHAP. 4

selection in finding good neighbors faster are discussed in Section4.4. An addi-
tional difference stemming from the peer selection policy, lies in the way the two
protocols do garbage collection. In T-Man, a predefined number of linksof highest
age are discarded in each cycle, with the motive that good neighbors that are still
alive will soon become known again. This is the same garbage collection tech-
nique used in the PEER SAMPLING SERVICE (see parameterH in Section3.2.2).
Although this is efficient for garbage collection, it results in good neighbors being
temporarily forgotten. In our framework we do not explicitly remove neighbors of
high age. Instead, we select to contact the neighbor with oldest age (tail peer se-
lection), and remove it from the VICINITY view. If it is still alive, it is reinserted
in the view right away. If not, it simply remains removed. This way, a node’s
alive good neighbors remain continuously its neighbors. On a smaller note, our
framework provides higher flexibility with respect to the number of descriptors ex-
changed when gossiping. This has a direct impact on the bandwidth used,notably
when node profiles carry bulky information.

Concluding, the framework presented in this chapter constitutes a fundamen-
tal, generic protocol. We have already applied it in different areas [Voulgaris and
van Steen 2005; Voulgaris et al. 2006], and it is employed in multiple applications
throughout this dissertation, where it is also analyzed more specifically.

Part II

APPLICATIONS

CHAPTER 5

Routing Table Management:
Building Pastry

One of the fundamental subjects of this dissertation, the PEER SAMPLING SER-
VICE studied in Chapter3, introduces a model of communication based on random
contacts. The aim is to exploit randomness to disseminate information across a
large set of nodes in a simple, robust, and timely manner. Disseminating member-
ship information itself results in highly connected and remarkably robust overlays
that are adaptive to network changes, and appear to demonstrate self-healing be-
havior in the face of major network disasters. And all that comes with a very
simple framework, free of any type of centralized structures or administration,
operating in a fully autonomous, self-organizing fashion.

A different significant direction of recent research in P2P systems, has been
in designing overlay networks for routing. Such systems are widely knownas
Distributed Hash Tables(DHTs). The respective protocols operate in the appli-
cation layer, on top of an existing network physically interconnecting all nodes
(such as the Internet). They assign each participating node an ID, and route mes-
sages to a node based on that, rather than based on its IP address. Performance (in
terms of routing hops) is usually inferior compared to traditional IP routing, but
this is not the point. Their significance lies in the fact that they map ID keys to
nodes, in a way similar to traditional hash tables mapping numeric keys to table
entries. This function is crucial as a building block for numerous other applica-
tions, such as distributed network storage (OceanStore [Kubiatowicz et al. 2000]
and PAST [Rowstron and Druschel 2001b]), distributed web caching, etc. A num-
ber of DHT systems have been proposed to date, most important representatives
being Pastry [Rowstron and Druschel 2001a], Tapestry [Zhao et al. 2001, 2004],
Chord [Stoica et al. 2001], and CAN [Ratnasamy et al. 2001a]. Their common
property is that they all try to form and maintain some sort of structure across a

112 ROUTING TABLE MANAGEMENT: BUILDING PASTRY CHAP. 5

large number of participating nodes, that is then used to route packets amongthem.
However, their behavior is uncertain in the presence of highly dynamic environ-
ments, or serious disasters (i.e. half of the nodes disconnecting simultaneously),
or when bootstrapping a system from scratch.

In this chapter we present an alternative approach to building and manag-
ing DHT routing tables, based on the PEER SAMPLING SERVICE. Our approach
combines the advantages of DHTs with those of highly fault tolerant, self-healing
gossiping networks. More specifically, we focus on the Pastry DHT [Rowstron
and Druschel 2001a], and we employ the NEWSCASTinstance of the PEER SAM -
PLING SERVICE to bootstrap and maintain Pastry-like routing tables. We sub-
stantiate our claims by presenting experimental results from emulation in a real,
wide-area network.

Note that the research presented in this chapter constitutes our initial efforts
towards merging the structured with the unstructured worlds. As a historicalnote,
it has preceded the VICINITY protocol, which is more powerful in building and
maintaining topologies. Nevertheless, this research deserves a place in thisdis-
sertation, as an illustration of our first step in harnessing randomness to create
structure.

5.1. PASTRY-LIKE P2P ROUTING

Two of the most popular DHTs, Pastry and Tapestry, perform routing based
on the same concept: incrementally matching the destination’s ID, digit by digit.
In this section we present the organization and function of the principal structures
used for routing in these systems, therouting tables.

5.1.1. Basic Concept

Each node is assigned a unique numeric identifier, itsnode ID, or simplyID. When
presented with a message and a numerickey, a node routes the message towards
the node whose ID is equal to the given key. Node IDs and keys are N-bit integers,
forming a node ID space that spans from 0 to 2N−1. N has a typical value of at
least 64 to provide a sufficiently large ID space to accommodate possibly billions
of nodes. Nodes pick their IDs randomly with uniform probability from the set of
N-bit strings. It is, therefore, assumed that IDs are uniformly distributedacross all
geographic regions, multiple jurisdictions, and various networks.

SEC. 5.2 PASTRY-LIKE P2P ROUTING 113

5.1.2. Internal Structure of the Routing Tables

For the purpose of routing, node IDs and keys can be thought of as a sequence
of digits in base 2b (b-bit long digits), whereb is a configuration parameter with
typical value 4 (which implieshexadecimaldigits). Routing a message to its des-
tination is achieved gradually, by matching one additional digit of the message’s
key at a time, say, from left to right. That is, in each step the message is normally
forwarded to a node whose ID shares with the key a prefix at least one digit (b
bits) longer than the prefix the key shares with the present node’s ID, if such a
node is known. If such a node is not known, routing of that message fails.1

To implement the logic described above in message routing, each node main-
tains itsrouting table. The routing table of a node consists ofN/b rows of 2b

entries each. An entry contains the ID of a node, and its corresponding IP address.
A given row of the routing table contains 2b entries, and represents a matching pre-
fix in the node ID up to a digit position. Entries in ther-th row (r ∈ {1, . . . ,N/b})
contain nodes whose IDs share the same(r−1)-digit prefix with the present node.
Thec-th entry of ther-th row contains such a node, with the additional constraint
that its ID’s r-th digit is equal toc. For instance, assuming b=4 (hexadecimal
digits for the node ID), the 2nd entry of the 3rd row of the routing table for node
437BF52. . . (N/4 hex digits in total) is some node whose ID starts with 432, while
the 8th entry of its 5th row has a node whose ID starts with 437B8.

5.1.3. Routing

Upon receiving a message, a node compares the message’s key to its nodeID. If
they share a common prefix ofi digits, it should forward it to a node whose ID
shares a prefix ofi + 1 digits with the key. To accomplish that, the present node
looks up the(i +1)-th row of its routing table, which contains nodes sharing with
the key the samei first digits. Out of that row, it picks thek-th entry, wherek is
the value of the key’s(i +1)-th digit, and forwards the message to that node. That
node not only shares with the key the same firsti digits, but also the(i + 1)-th
one. This process continues either until the node whose ID matches all digitsof
the message’s key is reached, or, else, until the message cannot be forwarded any
further.

1In fact, current systems consult auxiliary structures that they maintain (such as theleaf setin
Pastry), which will not be considered in this chapter.

114 ROUTING TABLE MANAGEMENT: BUILDING PASTRY CHAP. 5

5.2. BUILDING ROUTING TABLES

An important issue in DHT-based peer-to-peer systems is managing the rout-
ing tables. These tables are kept up-to-date by having nodes that join or leave the
system contact other nodes explicitly. To handle failures, heartbeat algorithms are
used to probe nodes and to take measures when a failure is detected.

We propose a different approach, namely to separate routing from tableman-
agement, similar to the separation deployed in Internet routing protocols suchas
OSPF [Moy 1994] or RIP [Hendrick 1988]. We believe such a separation often
leads to a cleaner and simpler design, although sometimes at the cost of perfor-
mance.

In Chapter3 we showed that by means of the PEER SAMPLING SERVICE an
overlay can handle dynamics and stay up-to-date in a lazy fashion. For DHT-
based peer-to-peer systems, we propose to deploy the PEER SAMPLING SERVICE

for maintaining routing tables. Our method is completely decentralized, highly ro-
bust, and quickly adjusts itself to major changes in the network. These advantages
come at the price of continuous bandwidth consumption.

5.2.1. The Principal Idea

The PEER SAMPLING SERVICE has a number of important properties, as de-
scribed in section 2. It maintains a strongly connected overlay, sustains disasters,
adapts fast to (possibly major) network changes, and is highly scalable. The goal
is to combine its adaptivity strength with the efficiency of the routing scheme pre-
sented in Section5.1, to create a robust, highly fault resilient, peer-to-peer overlay
network for efficient routing.

The principal idea is to harness the knowledge of random neighbors to popu-
late routing table entries. Every node’s view is periodically refreshed with anum-
ber of new neighbors, chosen at random amongall the participating nodes. All
a node has to do, iskeepthose—randomly acquired—neighbors that are suitable
for filling up its routing table entries.

A node’s routing table consists ofN/b rows. Let us first concentrate on build-
ing the first row. Considering a division of nodes in classes based on their ID’s
first digit, we have 2b classes (since a digit isb bits long). The first row requires
one arbitrary representative from each class (excluding the presentnode’s class).
Since node IDs are evenly spread across the ID space, each class accounts for
roughly 1

2b of the nodes. Therefore, with reasonably high probability, a node will
have come across at least one representative from each class when afew more
than 2b random nodes become known to it. Assuming 2b = 16 (for b = 4) and a
view sizeℓpss= 20, this could even happen in one cycle, or, otherwise, in a couple
more. So, each node’s first row can be filled up in a matter of a couple of cycles

SEC. 5.2 BUILDING ROUTING TABLES 115

by pulling suitable neighbors from the dynamically refreshed PEER SAMPLING

SERVICE view.
For the second routing table row of a nodeP, we consider the set of nodes

whose IDs start with the same first digit asP’s ID, and we split them in classes
based on their ID’sseconddigit. Again, we have 2b classes. However, each of
these classes corresponds to

(

1
2b

)2
of the whole network, one order of magnitude

smaller fraction than the respective classes based on the first digit. Generally, the
respective classes for rowk correspond to

(

1
2b

)k
of the nodes, which becomes a

very small fragment of the network for higher values ofk. Instead of relying on
random nodes from thewholenetwork to hit upon representatives of these classes,
we pick random nodes from a pool containingonlynodes having IDs with a given
first digit. Such a pool is realized by a separate instance of the PEER SAMPLING

SERVICE, involving only nodes whose IDs start with the same first digit asP’s
ID. In that pool, each class corresponds to1

2b of its nodes, so representatives of all
classes are discovered rapidly, like representatives for the first row. Similarly, ad-
ditional instances of the PEER SAMPLING SERVICE are employed for the efficient
discovery of neighbors suitable for the rest routing tables rows. This leads us to
the multilayer PEER SAMPLING SERVICE architecture explained in the following
section.

5.2.2. Multilayer Architecture

To efficiently build and maintain routing tables, we run multiple instances of the
PEER SAMPLING SERVICE. A single physical node can participate in several of
them, by running a separateagent(i.e., software acting as a virtual peer) for each
one, maintaining its own, separate view of neighbors, and gossiping independently
from the other agents. In fact, each node runs exactlyN/b agents, participating in
an equal number of PEER SAMPLING SERVICE instances. Each agent is respon-
sible for maintaining one of theN/b rows in the node’s routing table. The agent
responsible for rowr ∈ {1, . . . ,N/b} of nodeP will be referred to asagent #r of
node P.

Each agent of a node sets its own criteria on which neighbors to accept. Agent
#i of nodeP maintainsonly neighbors whose IDs start with the samei−1 digits
asP’s ID. Moreover, a node’s agent #i gossipsexclusivelywith agent #i of other
nodes, as shown in Figure5.1. In other words, when agents #i of two nodes
gossip with each other, it implies the respective IDs of their nodes start with (at
least) the samei− 1 digits. Otherwise, neither would have been a neighbor of
the other, which is necessary to initiate gossiping. Additionally, the rest of their
neighbors have IDs starting with the samei−1 digits too. What we see is that,
agents #i of nodes that share the same firsti−1 ID digits, essentially run their own

116 ROUTING TABLE MANAGEMENT: BUILDING PASTRY CHAP. 5

instance of the PEER SAMPLING SERVICE, forming a cluster among themselves.
Consequently, the view of a node’s agent #i is periodically refreshed with new
neighbors of its group, that is, new neighbors whose IDs start with the same i−1
digits. That is, a node’s agent #i provides a source of random nodes from the pool
of nodes whose IDs start with a given(i−1)-long prefix. Note that agents #1 of
all nodes participate in the same PEER SAMPLING SERVICE overlay, includingall
nodes (as they all—trivially—start with the same 0 first digits), thus, maintaining
the whole network in a single, connected cluster.

Agent 1

Agent 4

Agent 3

Agent 2

Agent 1

Agent 4

Agent 3

Agent 2

Agent 1

Agent 4

Agent 3

Agent 2

Agent 1

Agent 4

Agent 3

Agent 2

Agent 1

Agent 4

Agent 3

Agent 2

Peer X

Peer W

Peer Y

Peer Z

Node A

Figure 5.1: Communication of nodeA during one communication cycle.

To facilitate and speed up the clustering ofall nodes of a given ID prefix
in the appropriate PEER SAMPLING SERVICE cluster, we devise the following
interaction between a node’s agents. Neighbors acquired by agent #i of a node,
therefore sharing a common(i−1)-long ID prefix, could be of interest to agents
#(i + 1), #(i + 2), and so on, of that node, if they additionally share the samei-
th, (i + 1)-th, etc., ID digits, respectively. In these lines, neighbors that become
known to a node’s agent #i arealso reported to the same node’s agent #(i + 1),
#(i +2), and so on. These agents filter the neighbors received from agent #i and
keep the ones matching their prefix requirement in their view (by replacing the
oldest view items).

An important observation is that once agents #i of all nodes that share the
same firsti−1 ID digits have formed a single cluster, agents #(i +1) of the nodes
among them that also share an arbitrary samei-th digit form a single connected
cluster very fast. Each agent #i learns aboutℓpss random peers with the same

SEC. 5.3 EXPERIMENTAL SETTING 117

first i−1 digits every∆T time units. Assuming evenly distributed node IDs, we
expect that on averageℓpss/2b of the peers that become known every∆T time units
share thei-th ID digit too with the present node in addition to the firsti−1 digits.
Given typical parameter values ofℓpss= 20 andb = 2, one or more peers sharing
i digits become known every∆T time units on average. This partly explains why
all agents of every node form clusters quickly, as we shall see later.

Notice that, initially, every node’s agent #(i + 1) forms its own (trivial) clus-
ter, disjoint from all the rest. Such a cluster generally expands on each cycle of
agent #i, since a random peer satisfying the prefix requirement of agent #(i + 1)
is introduced. Moreover, two clusters ofn andmnodes unite if any of then nodes
of one of them happens to learn about the existence of any of them nodes of the
other. Therefore, the larger disjoint clusters get, the more likely it becomesthey
will unite. What we are seeing, is an increasingly accelerating behavior in the
process of merging disjoint clusters. It is therefore reasonable to state that agents
#(i + 1) of a set of nodes sharing the same first #i digits form a cluster in just a
few cycles, provided agents #i of nodes sharing the same first #(i−1) digits form
a cluster too.

As mentioned earlier, all nodes’ agents #1 participate in the same instance
of the PEER SAMPLING SERVICE, and guaranteeing a (quickly formed) single
connected cluster ofall existing nodes. This helps clusters of agents #2 to form
fast too. By induction, and based on the claims of the previous paragraph, we
expect all instances of the PEER SAMPLING SERVICE executed by all agents of
all nodes, to quickly form the clusters they are designed for.

Our claims are further strengthened by the presentation of emulation analysis
in Section5.4.

5.3. EXPERIMENTAL SETTING

We implemented the architecture described in section5.2.2 in Java and de-
ployed it on the DAS-2, a 400-processor cluster geographically distributed over a
wide-area network across the Netherlands [DAS-2]. We carried out experiments
with a set of 65,536 nodes, a number of them running on each DAS-2 processor
simultaneously.

We considered node IDs of lengthN = 16 bits, and digits of lengthb = 4 bits
(hexadecimal digits). This setting resulted inN/b = 4 rows and 2b = 16 columns
per routing table.

The instance of the PEER SAMPLING SERVICE we chose to employ in this
chapter’s experiments is the NEWSCASTprotocol, described in Section2.8. Each
node was running 4 NEWSCASTagents, one for each of its 4 routing table rows. A

118 ROUTING TABLE MANAGEMENT: BUILDING PASTRY CHAP. 5

view size ofℓ = 20 was used for each NEWSCASTagent. We ran our experiments
with the same refresh interval of∆T = 10secfor all agents. That is, every 10 sec-
ondseachof the 4 agents of each node initiated a gossip exchange. We recorded
and analyzed the behavior of our architecture at intervals of 60 seconds, that is,
we logged the whole network’s state every 6 communication cycles.

Another facet of our experiments that is worth noting is thebootstrapping
mechanism. By bootstrapping we refer to the procedure of providing nodes with
the information required to jump-start the overlay network’s formation. In princi-
ple, a new node joins by contactinganyexisting node and gossiping with it. When
the whole network starts from scratch, a systematic way has to be present topro-
vide one or more initial communication points to each node. In our experiments,
all nodes’ agents #1 were provided with the address of one single node’s agent #1,
forming a star topology. Providing agents with a choice of—possibly random—
agents to initially connect to, enhances the randomness of the network fromthe
early cycles. However, a bootstrapping mechanism as simple and centralized as
the one we chose further endorses our claims of our architecture’s fast convergent
behavior, as discussed in the following section.

Finally, we imposed a fake large-scale failure while the experiment was run-
ning, in order to observe and analyze the behavior of our system in suchcases.
In particular, we killed 50% of the nodes in the middle of the experiment. Our
observations of the experiments and their analysis are presented in the following
section.

5.4. EXPERIMENTAL RESULTS AND ANALYSIS

This section presents the output of our experiments with 65,536 nodes. We
recorded and analyzed two aspects of the system’s behavior: dynamic forming of
the routing tables when bootstrapping, and following a large-scale failure.

5.4.1. Bootstrapping

This experiment aims at observing the system’s behavior while bootstrapping.
Figure5.2presents the system’s fast convergence to a fully operative routing sub-
strate. It shows the average number of routing table rows that are completely filled
per node, as a function of the number of cycles elapsed from the experiment’s start.
A node’s i-th routing table row being completely filled means that the node can
routeanymessage whose key sharesi−1 digits with the node’s ID to a peer node
whose ID additionally matches thei-th digit of the message’s key. Note that the
system manages to fillall routing table entries inall nodes in less than 30 cycles.

Figure5.3 illustrates the effectiveness of routing messages. From each node

SEC. 5.4 EXPERIMENTAL RESULTS AND ANALYSIS 119

 4

 3

 2

 1

 0
 0 5 10 15 20 25 30

N
um

be
r

of
 fi

lle
d

ro
ut

in
g

ta
bl

e
ro

w
s

Cycles

of filled rows

Figure 5.2: Average number of filled routing table rows.

we routed a number of messages to random nodes. Figure5.3(a) shows the num-
ber of routing steps (hops) messages took en route to their destination, on average.
Initially, routing tables are empty, so messages cannot take any steps towards their
destinations. However, as routing tables start being built, messages follow in-
creasingly more routing steps towards their destinations. This graph is akin to
Figure5.2, as the number of routing steps a message takes is directly dependent
on the number of routing table rows that have been filled.

Figure5.3(b) shows the percentage of messages that manage to reach their
destinations, as a function of the number of cycles. For the first 10 cyclesfew
or none of the messages reach their targets. As routing tables are filled, more
messages are routed all the way through to their destinations. As it turns out,after
the first 24 cycles, 99.74% of the messages are delivered to their destinations, and
after 30 cycles, this fraction increased to 99.998%.

5.4.2. Robustness to Large-Scale Failures

To test the system’s behavior in the face of large-scale failures, we intentionally
killed half of the nodes in the network, at some point when all routing tables were
guaranteed to be completely filled. That point corresponded to approximately
10 minutes after the start of the experiment. We refer to the cycle when this
catastrophic failure occurred as cycled. More specifically, we killed all nodes with
an odd ID. As expected, NEWSCASTmaintains the surviving nodes connected in
a single cluster. As we will see, the overlay adapts very quickly to reflect the
modified network.

Figures5.4 and 5.5 are analogous to the previous figures,5.2 and 5.3, re-
spectively. Figure5.4 shows the average number of routing table rows that are

120 ROUTING TABLE MANAGEMENT: BUILDING PASTRY CHAP. 5

 0

 1

 2

 3

 4

 0 5 10 15 20 25 30

A
ve

ra
ge

 r
ou

tin
g

st
ep

s
ta

ke
n

Cycles

Avg. # of routing steps

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30P
er

ce
nt

ag
e

of
 m

es
sa

ge
s

de
liv

er
ed

 to
 d

es
tin

at
io

n
Cycles

% of msgs delivered

(a) (b)

Figure 5.3:(a) Number of routing steps taken on average;(b) Percentage of mes-
sages reaching their destination.

completely filled (with valid entries), per node. Note that outdated entries of
crashed nodes (the ones with odd IDs) are not considered valid, and therefore
are not counted. Immediately after the crash none of the routing table rows are
fully filled, which implies that all routing rows of all nodes also contained some
entries with odd node IDs. However, as can be seen in the diagram, routingtables
are filled very quickly. Within 30 cycles from the point of disaster, the firstthree
routing table rows of all nodes have been filled. Note that this is the maximum
number of rows that can be filled per node. The 4th rows of all routing tables
cannot be filled, as they would require nodes that match all possible cases for the
last digit of their IDs. Since nodes with odd IDs do not exist any more, it is not
possible to fill up these rows. This, however, does not affect routing,as routing
paths to all existing nodes (i.e. nodes with an even ID) do exist and are complete.

The system’s capability to route messages can be seen in Figure5.5. Fig-
ure5.5(a) shows the average number of hops a message traverses. Initially, since
half of the nodes have been removed, messages are routed on averagehalf-way
through to their destination. As routing tables are adjusting to the modified net-
work, messages follow more hops towards their destinations. Figure5.5(b) shows
the percentage of messages that reach their destinations. Just like in the bootstrap-
ping case, routing tables are formed very quickly. It takes less than 20 cycles from
the moment of the crash to form routing tables that can route any message from
anysource toanydestination.

SEC. 5.4 EXPERIMENTAL RESULTS AND ANALYSIS 121

 4

 3

 2

 1

 0
d+30d+25d+20d+15d+10d+5d

N
um

be
r

of
 fi

lle
d

ro
ut

in
g

ta
bl

e
ro

w
s

Cycles

of filled rows

Figure 5.4: Average number of filled routing table rows when recovering from a
50% node crash that happened at cycled.

5.4.3. Bandwidth Considerations

In this section we provide an estimation of the individual (per node) and aggregate
bandwidth used in our experiments. Despite the 16-bit node IDs we used in our
experiments, we make the estimation assuming node IDs of 64 bits, which would
be the ID size in real operation.

A node descriptor consists of 16 bytes: 8 bytes for the node’s 64-bit ID, 4
bytes for its IP address, 2 bytes for the port, and 2 bytes for the descriptor’s time-
stamp. The view maintained by each agent of a node hasℓ = 20 descriptors,
which account for 320 bytes. A view exchange involves sending the viewto a
peerand receiving the peer’s view, causing traffic of 640 bytes in total. Every
∆T, each agent of every node initiates exactly one view exchange, and alsopartic-
ipates on average in one view exchange initiated elsewhere. Therefore,two view
exchanges per agent cause traffic of 1280 bytes. For all four agents, a single node
exchanges 4×1280= 5120 bytes every∆T = 10sec. That is, 512 bytes per sec-
ond, or 4096bps (4Kbps). This is the price to pay for achieving fully operative
routing tables in less than 30×10= 300 seconds, which is 5 minutes.

For the aggregate bandwidth we multiply the individual node bandwidth by the
number of nodes and divide by two, since the traffic caused by each viewexchange
has been counted twice, once for the gossip initiator and once for the gossip re-
cipient. Therefore, we have a total bandwidth of 65,536×4/2 = 131,072Kbps,
which is 128Mbps. Note that even though this bandwidth seems too high, it is in
fact distributed across the whole (possibly world-wide) network.

In a real system, with 64-bit node IDs, and a digit length of 4 bits, we would
need 16 agents running per node. This would require the exchange of 16×1280=

122 ROUTING TABLE MANAGEMENT: BUILDING PASTRY CHAP. 5

 0

 1

 2

 3

 4

d+30d+25d+20d+15d+10d+5d

A
ve

ra
ge

 r
ou

tin
g

st
ep

s
ta

ke
n

Cycles

Avg. # of routing steps

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

d+30d+25d+20d+15d+10d+5dP
er

ce
nt

ag
e

of
 m

es
sa

ge
s

de
liv

er
ed

 to
 d

es
tin

at
io

n
Cycles

% of msgs delivered

Figure 5.5: Message routing while recovering from a 50% node crash that hap-
pened at cycled. Left: Average routing steps taken. Right: Percentage of mes-
sages delivered.

20,480 bytes every∆T per node. Note that the refresh interval,∆T, is a config-
uration parameter. By setting a longer refresh interval, we can lower the band-
width used by each node, at the expense of slower completion of the routingta-
bles. For instance, a refresh interval of∆T = 60secwould require a bandwidth
of 20,480/60≃ 341 bytes per second, or roughly 2.7Kbps. However, in that case
routing tables would take longer to be filled, around 30 minutes.

5.5. CONCLUSIONS AND RELATED WORK

In this chapter we demonstrated the potential of the PEER SAMPLING SER-
VICE in forming a structured overlay. In particular, we focused on managing
routing tables for DHT-based peer-to-peer networks. We introduced amulti-layer
architecture consisting of multiple instances of the PEER SAMPLING SERVICE,
and investigated the system’s behavior through experimentation. We showedthat
the proposed system forms routing tables fast, in a totally decentralized, self-
organized manner. We also showed that it demonstrates self-healing behavior in
the face of large-scale network disasters.

A more recent version of Pastry [Castro et al. 2003] has adopted gossiping
for lightweight selection of neighbors of closer proximity. Nodes periodically
gossip with neighbors of every row. It resembles our protocol in the sense that
neighbors of rowr are contacted in search of better neighbors of the respective
row. However, nodes gossip a node’s neighbors with respect

It resembles our protocol in the sense that nodes gossip with their neighbors

SEC. 5.5 CONCLUSIONS ANDRELATED WORK 123

of a
In [Jelasity and Babaoglu 2005], Jelasity and Babaoglu suggest an alternative

method to build a Pastry-like DHT based on NEWSCASTand T-MAN, a protocol
very similar to VICINITY . They assign each node an ID, and define the distance
between two nodes as the number of different bits in the binary representations
of the two IDs. The T-MAN ranking function(similar to the selection function
in V ICINITY) gives higher preference to nodes of shorter distance. Eventually,
nodes get to establish links to all other nodes whose IDs differ only in one bit to
their own ID. This topology is quite similar to the one defined by Pastry’s routing
tables. Their solution appears to be more efficient than the one proposed inthis
chapter.

Montresor et al. apply T-MAN and NEWSCAST in [Montresor et al. 2005]
to bootstrap and maintain the Chord DHT. In Chord, nodes are assigned IDs in
a cyclic ID space, and each node maintains links to nodes of successive IDs, at
steps 2i , i = 0,1,2, . . . Montresor et al. define a T-MAN ranking function that
sorts nodes in a ring structure (based on numeric ID distance). As nodesdiscover
neighbors of increasingly closer ID distance, they remember the ones at numeric
distance closer to 2i , forming an overlay that resembles Chord. Although their
method is efficient, the whole process needs to be regularly restarted at allnodes,
to refresh nodes’ routing tables and accommodate for changes in the network.

A more sophisticated solution would include a number of optimizations, such
as giving higher preference to neighbors of high bandwidth or low latency, dynam-
ically adjusting the gossiping frequency at each layer, aggregating gossip mes-
sages to save bandwidth, etc. However, such optimizations are left as future work.
We emphasize that the goal of the research presented in this chapter was toprove
the concept of using an unstructured overlay to bootstrap and maintain a structured
one, in a simple, self-organizing manner, exhibiting self-healing properties.

The results of the experiments suggest that our system can provide highlyro-
bust, non-centralized routing table management. However, given the exploratory
nature of this research, no special concern has been given to bandwidth consump-
tion. Our architecture could possibly use significantly less bandwidth if adaptive
refresh intervals were applied. Also, each agent of a node could havean individ-
ually optimized set of configuration parameters, such as view size and gossiping
period. However, future research in this field should exploit VICINITY ’s power in
building structured overlays.

124 ROUTING TABLE MANAGEMENT: BUILDING PASTRY CHAP. 5

CHAPTER 6

Information Dissemination

Reliable group communication forms an important class of operations in dis-
tributed systems. It is crucial to a number of applications, including event no-
tification systems [Eugster et al. 2003a], distributed database replication [Demers
et al. 1987], and distributed failure detection [van Renesse et al. 1998]. In this
chapter we are particularly interested ininformation dissemination, that is, the
broadcasting of messages to a set of nodes.

6.1. BACKGROUND AND RELATED WORK

One class of solutions for information dissemination is specifically designed
to take advantage of the physical properties of certain types of networks. For
example, a number of solutions are built to disseminate messages over Ethernet
networks [Babaoglu 1987; Clegg and Marzullo 1997; Cristian 1990; Abdelza-
her et al. 1996]. Such protocols provide high efficiency and strong reliability.
However, their use is limited to the types of networks they are designed for, and,
therefore, they are not suitable for large-scale, wide-area networks.

Another class of solutions, suitable for wide-area networks, consists ofIP
Multicast protocols. These protocols are not reliable. They rely on functionality
embedded in routers, that enables the dynamic construction of a dissemination
tree (or generally graph) reaching all participating nodes. A number of solutions
have been proposed on top of IP Multicast, such as SRM [Floyd et al. 1997] and
RMTP [Lin and Paul 1996], to improve its reliability. Nevertheless, IP Multicast
is not widely deployed in the Internet.

Application-layer multicastforms a third class of solutions that has emerged
in the recent years. The main advantage of these solutions is that they are very
generic, and, therefore, they can be directly deployed over today’s network infras-

126 INFORMATION DISSEMINATION CHAP. 6

tructure. There exist application-layer multicast protocols that provide reliability
guarantees [Hadzilacos and Toueg 1993]. However, many of them do not scale
well to a large number of nodes [Piantoni and Stancescu 1997].

A class of application-layer multicast has recently emerged [El-Ansary et al.
2003; Castro et al. 2002; Zhuang et al. 2001], based on the structure of DHTs
such as Chord [Stoica et al. 2003], Pastry [Rowstron and Druschel 2001a], and
Tapestry [Zhao et al. 2004, 2001]. What is common in these DHTs is that, in their
respective overlays, each node is the root of a tree spanning the wholenetwork.
These spanning trees are used for message dissemination. Although systems of
this class are nearly optimal with respect to message overhead, a single failure
along a spanning tree can result in a whole branch missing a message. Failures are
disregarded as a whole in [El-Ansary et al. 2003], where the assumption of reliable
communication is made. Scribe [Castro et al. 2002] provides by default best-effort
delivery. Reliability is improved to some extent by imposing TCP connections
among nodes, a rather heavy assumption for dynamic, large-scale P2P networks.
Finally, Bayeux [Zhuang et al. 2001], a system mainly targeted at data streaming,
improves on reliability by redundantly disseminating messages across different
paths of a spanning tree. However, its design is exposed to scalability problems,
as each request to join a group is routed to a single node managing that group.

Another class of protocols targeted at large-scale dissemination of data has
recently gained enormous popularity. BitTorrent [Cohen 2003] is the most pop-
ular example, but numerous other protocols have been suggested, suchas Tri-
bler [J.Pouwelse et al. 2006], Slurpie [Sherwood et al. 2004], ChunkCast [Chun
et al. 2006], ChunkySpread [Venkataraman et al. 2006], and CoopNet [Padmanab-
han and Sripanidkulchai 2002]. These systems are designed for the dissemination
of large files to a set of nodes. More specifically, they aim at reducing thedown-
load time for large files, and at the same time off-loading the servers serving these
files. The principal idea behind these protocols is splitting a large file in many
small parts, distributing different parts to various peers, and then letting those
peers talk to each other to retrieve the parts they are missing. Such mechanisms
can be significantly effective in enhancing the download speed of large files, while
reducing the load of the server offering a file, notably when a large set of down-
loading peers is involved. However, they are not suitable for the dissemination of
small messages, which we deal with in this chapter.

Gossip-based protocols, such as Bimodal Multicast (pbcast) [Birman et al.
1999] and Directional Gossip [Lin and Marzullo 1999] form an alternative to
strongly reliable broadcasting approaches. Each node forwards a message to a
small random subset of the network, and so on. These protocols generally provide
only probabilistic guarantees for message delivery. However, they are attractive
because they are easy to deploy and resilient to node and link failures, due to re-

SEC. 6.2 EVALUATING A DISSEMINATION SYSTEM 127

dundant message deliveries. On the other hand, scalability can suffer ifnodes are
required to maintain full knowledge of the network, notably when node churn is
at stake. Optimizations have been suggested in [Birman et al. 1999] to overcome
such scalability issues.

Other gossiping protocols, such aslpbcast[Eugster et al. 2001, 2003b] and [Ker-
marrec et al. 2003; Gupta et al. 2006] provision for membership management too.
In particular, [Gupta et al. 2006] describes a hybrid dissemination system, that
multicasts messages using a tree-based hierarchical structure, and locallyswitches
to gossiping when a large number of failures is detected. These protocols drop the
assumption of full knowledge of the network. Each node maintains a small viewof
the network, consisting of a few links to neighbors, which are used for dissemina-
tion. This makes them highly scalable. However, due to their probabilistic nature,
a message may fail to reach the whole network even in a fail-free environment. To
alleviate this, highly redundant message forwarding is employed.

In this chapter we present a gossip-based protocol that is deterministic in fail-
free networks. When failures occur, its reliability degrades gracefully with the
number of failures. Our protocol is based on the VICINITY /CYCLON framework,
presented in Chapter4.

6.2. EVALUATING A DISSEMINATION SYSTEM

A number of issues are of concern when evaluating or comparing information
dissemination systems. It is essential for the rest of this chapter to list the metrics
used to evaluate the effectiveness and usefulness of a dissemination system.

Hit ratio This is defined as the ratio of nodes that receive a message over the
total number of nodes for which that message is intended. It is a metric of a
dissemination system’s reliability. Ideally, a reliable dissemination system
should always achieve a hit ratio 100%. In our evaluation (Section6.6), we
present graphs of the complementarymiss ratiometric, defined as follows:

MissRatio= 1−HitRatio

Resilience to failures and churn For a dissemination system to be meaningful
in a real-world dynamic network, it should operate reasonably well in the
presence of node or link failures, and node churn. The operation under such
conditions is evaluated by means of the hit ratio, described above.

Dissemination speedThe time required for the dissemination of a particular mes-
sage to complete. Obviously, the faster a message is disseminated the bet-
ter. Dissemination speed depends on two main factors. First, the delay

128 INFORMATION DISSEMINATION CHAP. 6

in forwarding messages (processing delay on nodes plus network latency).
Second, the number of hops a message takes to reach the last node. In our
evaluation we focus on the latter factor.

Message overheadThe overall number of times a message is forwarded during
its dissemination. For a message to reachN recipients, it has to be for-
warded a minimum ofN times. In practice, however, message overhead
is often multiple times higher. Message overhead is a metric of a dissem-
ination system’s behavior with respect to preserving or wasting network
resources.

Load distribution The distribution of load over nodes, in terms of messages re-
ceived and messages forwarded. Ideally, load should be evenly distributed
among participating nodes.

In this chapter we are interested in reliable dissemination of messages origi-
nating atanynode toall participating nodes. We do not focus on optimizing the
dissemination of messages with respect to any proximity metric or by building a
spanning tree. Also, we do not consider positive or negative acknowledgements,
or requests for retransmission of lost messages. Instead, we introduceredun-
dancy in message dissemination and examine its relation to the level of reliability
achieved. We investigate the power of epidemics at disseminating messages to all
nodes, with a high probability.

6.3. DETERMINISTIC DISSEMINATION

Consider a system consisting ofN nodes, and a set of directed links among
them. A messagecan originate at any of the participating nodes, and aims at
reaching the whole network. A node that generates a new message or receives
a message for the first time, forwards it acrossall its outgoing links. If a node
receives a message for the second time, it simply ignores it. As an optimization, a
message is never forwarded back to the node it was just received from.This basic
algorithm is often referred to asflooding. Figure6.1(a) shows the pseudocode for
the dissemination algorithm.

The distinguishing characteristic of flooding is that one can deterministically
control dissemination by imposing the appropriate overlay on the nodes. The
underlying requirement to guarantee complete dissemination starting from any
participating node, is to form astrongly connected directed graph1 includingall
nodes. A multitude of overlays have been proposed for information dissemination

1a directed graph in which there is a directed path between any ordered pairof nodes

SEC. 6.3 DETERMINISTIC DISSEMINATION 129

whennodeP generates messagem,
or receivesm from nodeQ do

if mnot already seenthen
targets← selectGossipTargets(Q)
foreachT ∈ targetsdo send(T, m)

endif
end

function selectGossipTargets(Q)
targets← view-{Q}
return targets

end

(a) (b)

Figure 6.1: (a) The generic dissemination algorithm. (b) Gossip target selection
for deterministic dissemination (flooding).

by means of flooding, each one demonstrating a different behavior with respect to
the metrics listed in the previous section.

Spanning treesor simply treeswere among the first types of overlays pro-
posed for flooding. Their strong point is that they are optimal with respectto the
number of links maintained and, consequently, to the message overhead associ-
ated with dissemination. Indeed, in a network consisting ofN nodes, the complete
dissemination of a message over a tree involves exactlyN−1 point-to-point com-
munications. Their main disadvantage, though, is that a single failure of any link
or any non-leaf node disconnects the tree, prohibiting messages from reaching all
nodes. Also, maintaining a valid tree structure, ensuring the graph is connected
and yet acyclic, is not a trivial task in the presence of failures. For these reasons,
trees are not suitable for dynamic environments where failures can happen.

A special type of tree-based overlays for flooding is theserver-basedclass
(star graphs), where all nodes are connected by bidirectional links to a single
node acting as a relay server. In these overlays all but the server node are leaf
nodes, therefore their failure has no effect on the remaining nodes, but the server
becomes a single point of failure. In addition, such overlays demonstrate theworst
possible load distribution, the server node being linearly loaded by the number of
nodes and number of messages being disseminated, rendering it a non-scalable
solution.

On the other end of the spectrum liecliques(complete graphs). In such a
setting, every node has a complete view of the network. A node broadcastsa
message by sending it to every other node in the network. This provides maximum
reliability, at the cost of high maintenance costs. Although messages alwaysreach
all nodes irrespectively of how many nodes have failed, maintaining this type
of overlay is impractical. Maintaining a fully connected graph is expensive in
networks larger than a few dozen nodes, notably when the membership changes
continuously.

A class of flooding overlays deserving more attention is the one based on

130 INFORMATION DISSEMINATION CHAP. 6

Harary graphs, introduced by Harary in [Harary 1962], further studied by Jenk-
ins and Demers [Jenkins and Demers 2001], and applied by Lin et al. [Lin et al.
2000] in flooding. A Harary graph of connectivityt is a minimal link graph that is
guaranteed to remain connected when up tot−1 nodes or links fail. Its minimum
cut, therefore, consists oft links. Moreover, in a Harary graph links are evenly
distributed across nodes, each node having eithert or t +1 bidirectional links. An
example Harary graph of connectivity 2 is a bidirectional ring, that we will use
later in Section6.5.1. Such overlays are very appealing for information dissemi-
nation in the presence of failures, as they are guaranteed to sustain up to acertain
number of failures while imposing the minimum message overhead (for the cor-
responding reliability guarantees), and this overhead is evenly balancedacross all
nodes. The maintenance of such graphs, notably of higher connectivityt, can be a
complicated and expensive task for large-scale, dynamically changing networks.

6.4. PROBABILISTIC DISSEMINATION

Acquiring reliability by imposing systematic structure on overlays is infea-
sible in dynamic networks of massive scale. In this section we take a look at
an appealing alternative,probabilistic disseminationalgorithms, which trade-in
deterministic reliability guarantees in return of overlay construction and mainte-
nance simplicity.

In these algorithms, dissemination is not guaranteed by means of a strategic
topology, but by increased redundancy in message forwarding. The basic idea is
that a node receiving a message forwards it to a number ofrandomother nodes. It
turns out that if that number is sufficiently high, messages reach all nodeswith a
high probability [Kermarrec et al. 2003]. The choice of random nodes to forward
messages to can be easily handled by a peer sampling protocol as described in
Chapter3. The main advantage of probabilistic dissemination algorithms is that
they are very simple to implement and inherently tolerant to dynamic environ-
ments, at the cost of an increased message overhead.

6.4.1. The RANDCAST Dissemination Algorithm

We consider a system consisting ofN nodes. Each node runs the PEER SAM -
PLING SERVICE, providing it with a small, random, partial view of the network.
A messagecan originate at any of the participating nodes, and aims at reaching
the whole network. A node that generates a new message or receives a message
for the first time, forwards it to (up to)F nodes, called the node’sgossip targets,
chosen randomly from its membership protocol’s view.F is a system-wide pa-
rameter, called thefanout. A message is never forwarded back to the node it was

SEC. 6.5 PROBABILISTIC DISSEMINATION 131

function selectGossipTargets(Q)
targets← F random nodes fromview-{Q}
return targets

end

Figure 6.2: Gossip target selection for the RANDCAST dissemination algorithm.

just received from. Figure6.2 shows the pseudocode for the selection of gossip
targets in the RANDCAST dissemination algorithm.

Note that this algorithm is quite efficient at spreading a message to a consid-
erable percentage of the nodes in the network very fast, specifically at exponential
speed with baseF . Indeed, a new message progressively reachesF0 (=1, the mes-
sage generator),F1, F2, . . . other nodes. Consequently, a message spreads very
fast even for small values ofF ≥ 2. Of course, dissemination slows down when
the message is forwarded to nodes that have already received it. However, in an
overlay with highly randomized links (low clustering), such as the one formedby
CYCLON, this slowdown turns out to be negligible until the message reaches a
substantial percentage of the network.

Despite its strength at spreading messages fast, RANDCAST is not as efficient
at achievingcomplete dissemination, that is, to reach every single node in the net-
work. It is by nature a probabilistic algorithm. Even in the absence of failures,
it provides no hard guarantees that a message will reachall nodes. It is not hard
to see why. By forwarding messages at random, a node has no guarantees that at
least one of its incoming links will be chosen to forward the disseminated mes-
sage. To alleviate this, abundant redundance should be introduced by means of a
large fanout. However, this is not desirable, because message overhead increases
proportionally to the fanout, as we will see in the evaluation in Section6.6.

The RANDCAST dissemination algorithm has been analyzed and evaluated by
Kermarrec et al in [Kermarrec et al. 2003]. In that paper, a node’s view is chosen
uniformly at random among the whole network. In the version of RANDCAST

studied in this dissertation, nodes’ views are managed by CYCLON.

In the following section we introduce a novel, hybrid dissemination algorithm,
combining deterministic and probabilistic dissemination. We defer the evaluation
of both protocols until Section6.6, where they are compared side by side.

132 INFORMATION DISSEMINATION CHAP. 6

6.5. HYBRID DISSEMINATION

As we discussed above, although probabilistic protocols are good at spread-
ing messages fast even for small values ofF , a large value ofF is mandated to
reach every single node in the network. This inefficiency can be tackled by intro-
ducing somedeterminismin the selection of gossip targets, ensuring any possible
dissemination graph is connected and includes all nodes.

Hybrid dissemination protocols aim at combining probabilistic and determin-
istic behavior. To that end, they establish two types of links among nodes. Random
links (r-links) contribute to their probabilistic behavior, and deterministic links (d-
links) bring in determinism. R-links are simply links randomly selected, just like
in purely probabilistic dissemination protocols. When presented with a message,
a node forwards it across a few r-links. Consequently, messages initiallyspread to
a large portion of the network at close to exponential speed.

However, a disseminated message should reach every single node in the net-
work. That is, it should have been forwarded across at least one incoming link of
each node. The basic idea is to establish a set of d-links, and have nodesdeter-
ministically forward messages acrossall their outgoing d-links, in addition to a
few of their outgoing r-links. If the set of d-links forms an overlay compliant to
the deterministic dissemination protocols’ requirement, that is, it forms a strongly
connected directed graph including all nodes, complete dissemination of messages
is guaranteed. In such a graph, each node’s indegree is at least 1. Moreover, if we
ensure that each node has at leastt incoming d-links, then complete dissemination
is guaranteed even in the presence of up tot−1 faulty nodes.

Hybrid protocols effectively decouple the two fundamental goals in informa-
tion dissemination. On one hand, spreading a message to a large percentageof
the nodes fast, and on the other, reaching every single node. The probabilistic
component carries out the bulk of the dissemination task, while the deterministic
one takes care of the fine-grained details.

What makes hybrid dissemination protocols attractive, is that the set of d-links
does not need to form a particularly sophisticated and hard-to-maintain structure.
The sole requirement is that the set of d-links forms a strongly connected directed
graph over all nodes. A simple structure satisfying this requirement is a ring. In
the following section we explore how it can be used as a basis for a practical
hybrid dissemination system.

6.5.1. The RING CAST Dissemination Algorithm

We introduce RINGCAST, a novelhybrid dissemination algorithm that—even
with a very low fanout—guarantees complete dissemination in a failure-free en-
vironment. In the presence of failures, its performance degrades gracefully, nev-

SEC. 6.5 HYBRID DISSEMINATION 133

Figure 6.3: Example of a RINGCAST overlay. Nodes are organized in a bidirec-
tional ring (by means of thed-links), and each one has a number (in this case only
one) outgoing random links (r-links).

ertheless still outperforming RANDCAST. Finally, when confronted with contin-
uous churn, RINGCAST proves again more reliable than RANDCAST, excluding
nodes that joined the system very recently (for which it performs worse).

Operation

As discussed above, hybrid dissemination algorithms maintain two types of links
between nodes, namely r-links and d-links. R-links are random links, in the case
of RINGCAST formed by CYCLON, just like in RANDCAST. With respect to d-
links, RINGCAST organizes nodes in aglobal bidirectional ringstructure. A bidi-
rectional ring constitutes a strongly connected graph, as required by deterministic
dissemination protocols. Figure6.3 illustrates an example RINGCAST overlay,
where nodes form a bidirectional ring, and each one has a single outgoing r-link.

A unidirectional ring would be appropriate as well, as it forms a strongly con-
nected graph too, though less reliable than a bidirectional one in the face offail-
ures. However, the crucial reason for deciding on a bidirectional ringlies in the
ring construction, and will be discussed in the following section.

Just like in the dissemination protocols discussed earlier, a node that gener-
ates a new message or receives a message for the first time, forwards it to(up to)
F nodes, whereF is the system-wide fanout parameter. However, in the case of
RINGCAST, a node always forwards a message to its two ring neighbors (sending
it across its two outgoing d-links), and acrossF − 2 randomly selected r-links.

134 INFORMATION DISSEMINATION CHAP. 6

function selectGossipTargets(Q)
targets←{}
if ringNeighbor16= Q then targets← targets+ {ringNeighbor1}
if ringNeighbor26= Q then targets← targets+ {ringNeighbor2}
targets← targets+ (F−targets.size) random nodes from (view−{Q})
return targets

end

Figure 6.4: Gossip target selection for the RINGCAST dissemination algorithm.

If the message was received through one of the node’s ring neighbors, the node
forwards it to the other ring neighbor, and acrossF−1 random r-links. Figure6.4
shows the pseudocode for the selection of gossip targets in the RINGCAST dis-
semination algorithm.

Note that the minimal cut in a bidirectional ring is two. That is, although
no single node failure can break the ring in two disjoined partitions, prohibiting
complete dissemination to the remaining nodes, such a situationwill occur if two
non-adjacent nodes fail. In most cases, however, this is not a crucialproblem for
dissemination, as d-links are only one facet of the process. R-links can carry the
message to arbitrary nodes, most often bridging the gap between two or moredis-
joined ring partitions. Effectively, it suffices if anyonenode of an isolated ring
partition receives the message, as the message will propagate to the whole parti-
tion over the d-links. Figure6.5presents a complete dissemination scenario over
a ring split in several partitions. As we will see in the evaluation in Section6.6,
RINGCAST achieves a high hit ratio (higher comparatively to RANDCAST) even
in the presence of many failed nodes.

Topology Construction

We employ the VICINITY /CYCLON topology construction framework for building
and maintaining RINGCAST overlays. By applying the appropriate VICINITY

selection function, we organize nodes in a bidirectional ring structure. The links
of this ring constitute the d-links. R-links are provided directly by CYCLON.

Letting nodes self-organize in a ring structure involves a global agreement on
a consistent ordering of nodes. Along these lines, each node selects anarbitrary
sequence ID(simply ID), out of a large ID space (e.g., 128 bits). Each node forms
links to the two nodes with closest IDs, one in each direction: the node with just
higher, and the node with just lower sequence ID, using modulo arithmetic. These
links define the bidirectional ring.

The VICINITY selection function,S(k,P,D), used to form this topology is

SEC. 6.5 HYBRID DISSEMINATION 135

Figure 6.5: Example of a message dissemination in a partitioned ring. For clarity,
only a few of the followed r-links are shown.

simple and straightforward. First, it sorts peers inD based on their sequence IDs.
Then, it selects thek ones with IDs closest to the ID ofP, k/2 in each direction.
That is, it selectsk/2 peers with just higher, andk/2 with just lower ID than the
ID of P, using modulo arithmetic. The two peers with closest IDs—one in each
direction—are used as ring neighbors.

The choice of a bidirectional—as opposed to unidirectional—ring, was not
made only to improve dissemination reliability, but was also a crucial design
choice for topology construction. Recall from Section4.2.2 that VICINITY is
more efficient if its selection function exhibits transitivity. That is, if peerP2 is

a “good” selection for peerP1 (P1
S

99K P2), andP3 is a “good” selection forP2

(P2
S

99K P3), then,P3 should have a good chance of being a “good” selection forP1

too (P1
S

99K P3), preferably a “better” selection thanP2. This way,P1 can gradually
improve its links.

Obviously, this does not hold for selection functions that select nodes ofclose
IDs in a singlegiven direction (e.g., only with just higher IDs). In this case, a
node’s neighbor with higher ID would only have neighbors with even higher IDs,
which would not help the original node improve its links. In contrast, if nodes
were maintaining neighbors of close IDs inboth directions, a node’s neighbor
with higher ID would also have some neighbors with lower (than his) ID, which

136 INFORMATION DISSEMINATION CHAP. 6

would be potentially “good” candidates for the original node.

6.6. EVALUATION

We evaluate the two protocols side-by-side in three scenarios. First, in a static
and failure-free network. Second, in a static network right after a catastrophic
failure, that is, after the sudden failure of a large number of nodes. Finally, in a
dynamic network under continuous node churn. Evaluation was done with respect
to the following criteria, as discussed in Section6.2:

1. Hit ratio

2. Dissemination speed

3. Message overhead

We do not explicitly address load balancing, because both protocols are by nature
distributing the load across all nodes evenly. A node receiving a messageforwards
it to F others, just like any other node.

Experiments were carried out using the PeerSim simulator [PeerSim]. We
tested all scenarios by instantiating a network of 10,000 nodes. Each nodewas
running CYCLON and, in the case of RINGCAST, V ICINITY too, as described
above, with view length 20 for each protocol. Nodes were initially supplied witha
certain single contact in their CYCLON views, forming a star topology. VICINITY

views were initially empty. After letting the network self-organize for 100 cycles,
we started disseminating messages from various nodes picked at random.

We assume a very simple dissemination model, that allows us to study the
evolution of disseminations in terms of discrete rounds, that we callhops. The
generation of a message is marked hop 0. At hop 1, the message reachesF neigh-
bors of the origin node. At hop 2, it further reaches the neighbors’ neighbors, and
so on. This way, we can evaluate the progress of a dissemination by counting the
number of messages sent and the number of new nodes notified per hop.

An implicit assumption underlying our dissemination model is that the pro-
cessing delay and network latency between all pairs of nodes are the same. Al-
though latencies vary in a real wide-area network, our assumption does not have an
effect on the macroscopic behavior of dissemination with respect to the hit ratio.
Dissemination relies on nodes forwarding the messages they receive. A node that
receives a message for the first time, forwards it to the same number of neighbors
picked with the same logic, irrespectively of the time this happens. Consider for
instance two scenarios of RANDCAST, executing over the same static overlay (as-
sume gossiping is currently stalled), starting from the same origin and each node

SEC. 6.6 EVALUATION 137

picking the same gossip targets in both cases. If pair-wise latencies are different
in the two scenarios, the order in which nodes are notified may change, butthe
exact same set of nodes will have been eventually notified. In the case ofRING-
CAST, the set of nodes notified may change, but the same macroscopic behavior
is maintained.

6.6.1. Evaluation in a Static Failure-free Environment

We first evaluate and compare the two protocols side-by-side by considering a
failure-free static environment.

We instantiated a network of 10,000 nodes in PeerSim. Each node was running
CYCLON and, in the case of RINGCAST, V ICINITY too as described above, with
view length 20 for each protocol. Nodes were initially supplied with a given single
contact in their CYCLON views, forming a star topology. VICINITY views were
initially empty. After letting the network self-organize for 100 cycles, we started
posting messages and observing their dissemination.

We ran a number of experiments—not presented here—to investigate the ef-
fect of gossiping speed on dissemination. More precisely, we explored the rela-
tion between the gossiping period and message forwarding time, that is, the time
is takes a node to process a message and forward it to a neighbor. We varied the
message forwarding time from zero to several times the gossiping period. We
recorded no effect whatsoever on the macroscopic behavior of disseminations.
That is, although changing the message forwarding time results in differentexper-
iments, with different nodes being reached each time and in a different order, all
macroscopic properties, such as the hit ratio, dissemination speed, and message
overhead, are preserved. It is not hard to see why. With respect to VICINITY -
managed d-links, they are not even altered by gossip exchanges once the optimal
sets have been obtained. With respect to CYCLON-managed r-links, these are ran-
dom links anyway, irrespective of whether they are updated fast or are currently
fixed. Consequently, forwarding a message along a few of them has an equivalent
effect regardless of whether gossiping runs at a high rate or is currently stalled.

Having verified this, we chose to disseminate messages overfixed overlays
in all experiments presented in this section. This choice was primarily made to
limit simulation execution to a reasonable time, considering the large number of
experiments we carried out. So, in each experiment, after self-organizingfor 100
cycles the overlay was frozen and only then did disseminations start.

For each value ofF ranging from 1 to 20 (the CYCLON view length), we
posted 100 messages from various nodes picked at random, resulting in atotal of
2000 experiments for each protocol. Since the hit ratio approaches 100%even
for small values ofF , it is more meaningful to present the miss ratio instead, in
logarithmic scale. Figure6.6(a) presents the dissemination miss ratio averaged

138 INFORMATION DISSEMINATION CHAP. 6

Miss ratio (% nodes not reached) Complete disseminations

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

%
 n

od
es

 n
ot

 r
ea

ch
ed

fanout

RandCast RingCast

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

%
 o

f c
om

pl
et

e
di

ss
em

in
at

io
ns

fanout

RandCast RingCast

(a) (b)

Figure 6.6: Dissemination effectiveness as a function of the fanout, for afailure-
free static network of 10K nodes. (a) Miss ratio averaged over 100 experiments;
(b) Percentage of 100 experiments that resulted in complete dissemination.

over 100 experiments for each value ofF . RANDCAST and RINGCAST are repre-
sented by light and dark bars, respectively. The miss ratio for RANDCAST appears
to be dropping exponentially as a function of the fanoutF . Note that no dark bars
appear in this graph, as the miss ratio for RINGCAST is zero for any choice of
F . This comes as no surprise, as RINGCAST’s operation guarantees complete
dissemination in failure-free static networks.

Figure6.6(b) shows the percentage of experiments that resulted in a complete
dissemination, for each value ofF . With respect to RANDCAST, it is interest-
ing to see that the transit from 0% to 100% follows a rather steep curve. For
instance, even with a fanout of 6, although the overall hit ratio was above99.9%
(Fig. 6.6(a)), none of the 100 experiments resulted in a complete dissemination.
With a fanout of 8, more than half of the disseminations were complete, while
by further increasing the fanout to 11 or higher we get only complete dissemi-
nations. As far as RINGCAST is concerned, this graph validates once again that
disseminations are always complete, irrespectively of the chosen fanout.

Having seen to what extent messages eventually spread, we now take a closer
look at the evolution of dissemination hop by hop. Figure6.7shows the progress
of all 100 dissemination for each protocols, for four different fanouts. More
specifically, it shows the number of nodes that have not yet been notified, as a
function of the hops taken.

Four main observations can be made by examining these graphs. First, for
a given fanout, all experiments of a protocol demonstrate very small variations

SEC. 6.6 EVALUATION 139

 0.01

 0.1

 1

 10

 100

 0 5 10 15 20 25 30

%
 n

od
es

 n
ot

 r
ea

ch
ed

 y
et

hops

Fanout 2

RandCast
RingCast 0.01

 0.1

 1

 10

 100

 0 2 4 6 8 10 12 14 16 18

%
 n

od
es

 n
ot

 r
ea

ch
ed

 y
et

hops

Fanout 3

RandCast
RingCast

 0.01

 0.1

 1

 10

 100

 0 2 4 6 8 10 12

%
 n

od
es

 n
ot

 r
ea

ch
ed

 y
et

hops

Fanout 5

RandCast
RingCast 0.01

 0.1

 1

 10

 100

 0 1 2 3 4 5 6 7

%
 n

od
es

 n
ot

 r
ea

ch
ed

 y
et

hops

Fanout 10

RandCast
RingCast

Figure 6.7: Dissemination progress in a static failure-free network of 10K nodes.
100 experiments of each protocol are shown.

140 INFORMATION DISSEMINATION CHAP. 6

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

1 2 3 4 5 6 7 8 91011121314151617181920

nu
m

be
r

of
 m

es
sa

ge
s

fanout

Msgs to virgin nodes
Msgs to notified nodes

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

1 2 3 4 5 6 7 8 91011121314151617181920

nu
m

be
r

of
 m

es
sa

ge
s

fanout

Msgs to virgin nodes
Msgs to notified nodes

RANDCAST RINGCAST

Figure 6.8: Total number of messages sent, divided in messages sent to not-yet-
notified and already notified nodes.

in their progress with respect to the hit ratio and dissemination latency. This is
important as it shows that by selecting the appropriate fanout value, we can tune
a system’s dissemination behavior to a good level of accuracy. Second, we notice
a clear—expected—influence of the fanout on dissemination latency. The higher
the fanout, the shorter a dissemination’s duration. Third, we observe thatthe
progress of disseminations for the two protocols is alike for a few initial hops,
when the message has not yet reached a significant portion of the network. The
protocols differentiate only after a substantial percentage of the nodes (i.e., at
least 80%-90%) have been notified. This is a direct effect of the two protocols’
operation. By forwarding messages at random, RANDCAST hardly reaches any
more non-notified nodes, in an already saturated network. On the contrary, by
also forwarding messages along the ring, RINGCAST exhaustively reaches out to
every single node. Finally, we see that the higher the fanout the more similarly the
two protocols disseminate messages. However, in all cases RINGCAST reaches
the last node in fewer hops, demonstrating a lower dissemination latency.

The third metric we are interested in is message overhead. As we already
mentioned in Section6.4.1, message overhead increases proportionally to the
fanout. Indeed, if a node forwards a newly received message toF other nodes
andNhit nodes are reached in a dissemination, the total number of messages sent
is F ×Nhit . Figure6.8 confirms this assessment. The shaded segments represent
the number of messages reaching nodes for the first time (noted as “virgin”nodes).
The striped segments represent the number ofredundant messages, that is, mes-
sages reaching already notified nodes, and therefore constitute a wasteof network
resources. As the network consists of 10K nodes, for a given fanoutF a complete

SEC. 6.6 EVALUATION 141

dissemination involvesF ×10K total messages, out of which 10K are messages
to “virgin” nodes, and the rest(F −1)×10K are redundant. The two graphs are
practically identical except for low fanouts, for which RANDCAST disseminations
do not reach all nodes. These graphs are illustrative with respect to thereason the
fanout should be kept as low as possible.

6.6.2. Evaluation after Catastrophic Failure

For a system to be usable in a realistic environment, it has to cope with failures.In
this section we explore the behavior of the two protocols in the face of catastrophic
failures, that is, when a number of nodes suddenly break down.

We set up the experiments like the ones in the previous section, but before
starting the disseminations we kill a randomly chosen portion of the nodes. That
is to say, for each experiment we simulate a network of 10,000 nodes, let it self-
organize for 100 cycles, and stall gossiping. We subsequently remove arandomly
chosen set of the nodes and examine dissemination over the remaining ones.

Unlike failure-free static networks where ongoing gossiping has no influence
on dissemination after some point (see Section6.6.1), in the face of failures gos-
sipingdoeshave an effect, namely a positive one. Following a catastrophic failure,
gossiping allows the network reorganize itself, removing links to dead nodesand
reestablishing valid ring links. In our experiments gossiping wasnot allowed fol-
lowing the catastrophic failure, exploring the ability of a partially damaged over-
lay to disseminate messages without giving it the chance to self-heal. This wasour
deliberate choice, aiming at testing a catastrophic failure’s worst-case influence on
dissemination.

Figure 6.9 presents the dissemination effectiveness for both protocols after
catastrophic failures killing 1%, 2%, 5%, and 10% of the nodes. Similarly to Fig-
ure 6.6 in the previous section, the graphs on the left show the miss ratio, and
the ones on the right the percentage of disseminations that reached all nodes, as
a function of the fanoutF . One can clearly see that RINGCAST is more effec-
tive at disseminating messages in all experiments. A closer look at these graphs
shows that as the volume of the catastrophic failure grows larger, the difference
between the two protocols’ effectiveness decreases. However, even when 10%
of the nodes are killed at once, RINGCAST demonstrates an order of magnitude
lower miss ratio than RANDCAST. The lower miss ratio of RINGCAST reflects on
the significantly higher percentage of complete disseminations for small fanouts.

Figure6.10shows the evolution of disseminations after a catastrophic failure
of 5% of the nodes, in accordance to Figure6.7 in the previous section. Once
again, the relation between the chosen fanout and dissemination latency is verified.
We also see that the evolution of disseminations exhibits small variations for a
given configuration, like in the case of a failure-free static network.

142 INFORMATION DISSEMINATION CHAP. 6

Miss ratio (% nodes not reached) Complete disseminations

fa
ile

d
no

de
s:

1%

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

%
 n

od
es

 n
ot

 r
ea

ch
ed

fanout

RandCast RingCast

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

%
 o

f c
om

pl
et

e
di

ss
em

in
at

io
ns

fanout

RandCast RingCast

fa
ile

d
no

de
s:

2%

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

%
 n

od
es

 n
ot

 r
ea

ch
ed

fanout

RandCast RingCast

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

%
 o

f c
om

pl
et

e
di

ss
em

in
at

io
ns

fanout

RandCast RingCast

fa
ile

d
no

de
s:

5%

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

%
 n

od
es

 n
ot

 r
ea

ch
ed

fanout

RandCast RingCast

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

%
 o

f c
om

pl
et

e
di

ss
em

in
at

io
ns

fanout

RandCast RingCast

fa
ile

d
no

de
s:

10
%

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

%
 n

od
es

 n
ot

 r
ea

ch
ed

fanout

RandCast RingCast

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

%
 o

f c
om

pl
et

e
di

ss
em

in
at

io
ns

fanout

RandCast RingCast

Figure 6.9: Dissemination effectiveness as a function of the fanout for static net-
work of 10K nodes, after catastrophic failures of 1%, 2%, 5%, and 10%of the
nodes.

SEC. 6.6 EVALUATION 143

 0.01

 0.1

 1

 10

 100

 0 5 10 15 20 25 30

%
 n

od
es

 n
ot

 r
ea

ch
ed

 y
et

hops

Fanout 2

RandCast
RingCast 0.01

 0.1

 1

 10

 100

 0 2 4 6 8 10 12 14 16 18

%
 n

od
es

 n
ot

 r
ea

ch
ed

 y
et

hops

Fanout 3

RandCast
RingCast

 0.01

 0.1

 1

 10

 100

 0 2 4 6 8 10 12

%
 n

od
es

 n
ot

 r
ea

ch
ed

 y
et

hops

Fanout 5

RandCast
RingCast 0.01

 0.1

 1

 10

 100

 0 1 2 3 4 5 6 7 8

%
 n

od
es

 n
ot

 r
ea

ch
ed

 y
et

hops

Fanout 10

RandCast
RingCast

Figure 6.10: Dissemination progress in a static network of 10K nodes, aftercatas-
trophic failure killing 500 nodes (5%). 100 experiments of each protocol are
shown.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

1 2 3 4 5 6 7 8 91011121314151617181920

nu
m

be
r

of
 m

es
sa

ge
s

fanout

Msgs to virgin nodes
Msgs to notified nodes

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

1 2 3 4 5 6 7 8 91011121314151617181920

nu
m

be
r

of
 m

es
sa

ge
s

fanout

Msgs to virgin nodes
Msgs to notified nodes

RANDCAST RINGCAST

Figure 6.11: Total number of messages sent, divided in messages sent to not-yet-
notified, already notified, and dead nodes.

144 INFORMATION DISSEMINATION CHAP. 6

Finally, Figure6.11illustrates the message overhead for dissemination in the
presence of a catastrophic failure of 10% of the nodes. Again, the total number
of messages is proportional to the chosen fanout. The lightly shaded segments
show the number of messages reaching nodes for the first time. The stripedones
represent messages reaching already notified nodes. Finally, the darkly shaded
segments show the number of messages sent to dead nodes (and therefore lost).
We see that the number of messages sent to dead nodes increases linearlyfor both
protocols.

6.6.3. Evaluation under Churn

Apart from catastrophic failures, a system should also be able to deal withnode
churn, that is, continuous node arrivals and departures. In this section, we examine
the behavior of the two protocols under churn.

We evaluate the two protocols against the artificial churn model introduced
in Section3.5.2. In that model, in each cycle a given percentage (known as the
churn rate) of randomly selected nodes are removed, and the same numberof new
ones join the network. Recall that this constitutes a worst case churn scenario,
as removed nodes never come back, so dead links never become valid again, and
new nodes have to join from scratch. We tested both protocols with a churn rate
of 0.2%, which, given a gossiping period of 10 seconds, correspondsto the churn
rate observed in the Gnutella traces by Saroiu et al [Saroiu et al. 2003].

Unlike experiments on static networks where a small number of cycles suf-
ficed to warm up the respective overlays (Sections6.6.1and6.6.2), experiments
on dynamic networks required significantly more warm-up cycles. A networkof
10,000 nodes was let gossip in the presence of continuous artificial churn, until
every node had been removed and reinserted at least once. For all experiments
this took several thousand cycles. Then the respective network was frozen, and
the resulted overlay was tested with respect to dissemination effectiveness.

Figure6.12shows the miss ratio and the percentage of complete dissemina-
tions as a function of the fanout. Although RINGCAST results in a lower miss
ratio than RANDCAST for low fanouts (2 to 5), it performs slightly worse for
fanouts 6 or higher. Also, none of the protocols achieves any complete dissemina-
tions, except when maximizing the fanout, in which case RANDCAST appears to
be performing better again.

By looking at these quantitative graphs alone, one could come to the con-
clusion that RINGCAST is not any better—if not worse—than RANDCAST when
node churn is at stake. A closer, qualitative examination ofwhichgroups of nodes
contribute to each protocol’s miss ratio will prove otherwise. As we will see,
RINGCAST’s miss ratio is almost entirely due to its poor performance at reaching
newly joined nodes, while it provides good dissemination guarantees to all older

SEC. 6.6 EVALUATION 145

Miss ratio (% nodes not reached) Complete disseminations

 0.01

 0.1

 1

 10

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

%
 n

od
es

 n
ot

 r
ea

ch
ed

fanout

RandCast RingCast

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

%
 o

f c
om

pl
et

e
di

ss
em

in
at

io
ns

fanout

RandCast RingCast

Figure 6.12: Dissemination effectiveness as a function of the fanout, in thepres-
ence of node churn. In each cycle, a randomly selected 0.2% of the nodes was
removed, and replaced by an equal number of newly joined nodes.

nodes.
Along these lines, we now investigate the relation between a node’slifetime2,

that is, the number of cycles since it joined the network, and its chance of receiving
a disseminated message. Figure6.13presents the distribution of node lifetimes
after the execution of several thousand cycles, when every node hasbeen removed
and reinserted at least once. In fact, Figure6.13plots the exact count of nodes
having a given lifetime, aggregated over 100 experiments, in log-log scale.Given
that the network consists of 10,000 nodes and the churn rate is 0.2%, at each cycle
20 random nodes are evicted and 20 new are added. Therefore, the number of
nodes having a given lifetime cannot exceed 20. For all 100 experiments together,
the number of nodes of a given lifetime ranges from 0 to 2000, hence the range of
the vertical axis.

The distribution of lifetimes of nodes thatwere not notifiedduring dissemina-
tion, is presented in Figure6.14. The distributions for two fanouts are shown, 3
(top) and 6 (bottom). It is clear that in all cases newly joined nodes (i.e., ones that
joined up to 20 or 30 cycles ago) experience significantly higher miss ratio than
other, older nodes. RINGCAST, in particular, results in quite more misses (notice
the log scale) than RANDCAST for these nodes. Nevertheless, for nodes that have
been in the network for at least 20 or 30 cycles, it demonstrates a substantially
lower miss ratio, almost negligible compared to that of RANDCAST. For instance,
let us take a look at dissemination with fanout 6. Although RINGCAST appears to
have a higher overall miss ratio than RANDCAST (Fig. 6.12), it hardly suffers any

2not to be confused with a node’sagefield, as defined and used in CYCLON

146 INFORMATION DISSEMINATION CHAP. 6

 1

 10

 100

 1000

 1 10 100 1000 10000

nu
m

be
r

of
 n

od
es

lifetime (in cycles)

Figure 6.13: Distribution of node lifetimes, summed over 100 experiments.

misses for nodes that joined at least 20-30 cycles earlier, contrary to RANDCAST.
Its miss ratio is entirely attributed to misses in newly joined nodes.

The implication behind this observation is worth noting. RINGCAST proves
to be a better dissemination tool, except for the first few cycles after a node’s
join. Once a warm-up period of a few cycles has elapsed, a node receives all
disseminated messages with very high probability. For a gossiping period of 10
seconds and a view lengthℓcyc = 20, the warm-up phase amounts to a bit over 3
minutes. In applications where faster node joins is vital, new nodes can gossip
at an arbitrarily higher rate for the first few cycles, to complete their warm-up
phase correspondingly fast. However, this is a mere optimization and will notbe
considered further in this dissertation.

At this point, it is interesting to understand why new nodes experience more
misses, and why this phenomenon is more intense in RINGCAST. Nodes are no-
tified through their incoming links. Their probability of being notified is tightly
related to how well they are known by other nodes. A new node joins the network
with zero indegree, and gradually increases it. Until a node’s indegree reaches
the average indegree of the network, it has less chance to receive a message than
older, better connected nodes. This shows clearly in the aforementioned graphs
(Fig. 6.14).

SEC. 6.6 EVALUATION 147

 1

 10

 100

 1000

 1 10 100 1000 10000

nu
m

be
r

of
 n

on
-n

ot
ifi

ed
 n

od
es

lifetime (in cycles)

Fanout 3

RandCast
RingCast

 1

 10

 100

 1000

 1 10 100 1000 10000

nu
m

be
r

of
 n

on
-n

ot
ifi

ed
 n

od
es

lifetime (in cycles)

Fanout 6

RandCast
RingCast

Figure 6.14: Distribution of lifetimes of nodes that were not notified, summed
over 100 experiments.

148 INFORMATION DISSEMINATION CHAP. 6

More specifically, a new node’s r-link indegree increases by one in each of its
first few cycles, and takes approximatelyℓcyc (hereℓcyc = 20) cycles to stabilize
to the average indegree of the network (which isℓcyc too). This is a property of
CYCLON, which manages r-links. So, for RANDCAST, which depends solely on
CYCLON, we observe a steep decrease in misses for nodes of lifetimes 1 through
20, followed by an immediate stabilization thereafter.

On the other hand, RINGCAST also depends on VICINITY to form the d-links
(i.e., the edges of the ring). However, a node does not benefit from incoming
V ICINITY links until the appropriate incoming d-links are formed, that is, until
it eventually becomes known by its two direct ring neighbors. Generally this
does not happen instantly, but may require an undefined—yet small—number of
cycles. Until then, a newly joined node relies only on its incoming r-links to
receive messages. During that phase, it is clear that newly joined nodes have
better chances to receive messages in RANDCAST, where messages are forwarded
to F r-links, as opposed to onlyF −2 r-links in RINGCAST. This explains why
RINGCAST exhibits more misses than RANDCAST for nodes that joined roughly
in the last 20 cycles (Fig.6.14).

Note that the further curve in misses for lifetimes greater than 100 simply
follows the lifetime distribution of the general node population (Fig.6.13).

6.7. DISCUSSION AND FUTURE WORK

In this chapter we explored how gossiping can be applied to form overlaysfor
information dissemination. Our goal was to introduce and demonstrate the ben-
efits of hybrid dissemination systems, in comparison to probabilistic ones. How-
ever, our work can be extended in many directions.

Some applications may require higher reliability in dynamic environments.
Recall from Section6.3 that a bidirectional ring is a Harary graph of minimal cut
two. One way to increase reliability, would be to design gossiping protocols that
form Harary graphs of higher connectivity. Another, simpler way, is to organize
nodes in multiple rings, assigning them a different random ID per ring. In both
cases, reliability would be improved at the cost of increased gossip traffic.

Another potential optimization is proximity-based dissemination. Proximity
can have many faces, e.g., geographic distance, domain name, network hops, etc.
In the protocols examined in this chapter, proximity is not taken into consider-
ation. For instance, a message originating in the Netherlands could follow a
path such as Netherlands→ Australia→ Switzerland→ Canada→ Greece→
Uruguay→ New Zealand. Obviously, such a path is far from optimal.

A straightforward way to partially deal with domain name proximity in RING-

SEC. 6.7 DISCUSSION ANDFUTURE WORK 149

nl.vu.cs_1234

nl.vu.cs_7831

nl.vu.few_0235

gr.upatras.ceid_8230

edu.umich.eecs_6223

gr.upatras.ceid_1050

nl.surfnet_3166

edu.umich.eecs_1011

Figure 6.15: Nodes organized in a ring based on domain name proximity.

CAST, is to incorporate domain names in the VICINITY similarity function. In
this version of RINGCAST, a node forms its ID by reversing its domain name
(country domain first) and appending a randomly chosen number. I.e., the ID of a
node at the.cs.vu.nl domain of the Vrije Universiteit in Amsterdam could be
nl.vu.cs.1234. Without any additional modifications, nodes naturally orga-
nize themselves in a ring sorted by domain name, and domains sorted by country.
An example can be seen in Figure6.15.

Finally, it should be noted that the protocols discussed in this chapter are per-
fectly suitable forapplication-layer multicastingtoo. In multicasting, a number
of multicast groupsare defined, and each message is associated with one of them.
All messages associated with a multicast group should be delivered to all nodes
subscribed to that multicast group. The usage of dissemination protocols such as
RANDCAST and RINGCAST for multicasting is straightforward. Each multicast
group forms its own, separate dissemination overlay. Nodes subscribe bysimply
joining the overlay(s) of the multicast group(s) of their choice. Finally, messages
are multicast by disseminating them in the appropriate dissemination overlay.

In this research we have not consideredpull-baseddissemination. We expect
it to significantly improve the efficiency of the protocol in terms of reliability.
However, additional issues have to be taken into account, such as the pullfre-
quency, the duration for which nodes maintain old messages, the size of buffers
on nodes, etc. Pull-based dissemination is left as future work, as it constitutes a
natural extension of our current research.

150 INFORMATION DISSEMINATION CHAP. 6

CHAPTER 7

Semantic Overlay Networks

A lot of recent research on content-based P2P searching for file-sharing has fo-
cused on exploiting semantic relations between peers to facilitate searching. To
the best of our knowledge, all methods proposed to date suggestreactiveways to
seize peers’ semantic relations. That is, they rely on the usage of the underlying
search mechanism, and infer semantic relations based on the queries placedand
the corresponding replies received.

In this chapter we introduce aproactivemethod to build semantic overlays,
by means of the VICINITY /CYCLON topology construction framework presented
in Chapter4. By applying the appropriate selection function, peers with similar
content are clustered together. It is worth noting that this peer clustering isdone
in a completely implicit way, that is, without requiring the user to specify his
preferences or to characterize the content of files he shares.

As a historical note, the VICINITY /CYCLON topology construction framework
presented in Chapter4, was first conceived and materialized in the context of the
research presented in this chapter.

7.1. OVERVIEW

File sharing peer-to-peer (P2P) systems have gained enormous popularity in
recent years. This has stimulated significant research activity in the areaof content-
based searching. Sparkled by the legal adventures of Napster, and challenged to
defeat the inherent limitations concerning the scalability and failure resilienceof
centralized systems, research has focused ondecentralizedsolutions for content-
based searching, which by now has resulted in a wealth of proposals forpeer-to-
peer networks.

In this chapter, we are interested in those groups of networks in which search-

152 SEMANTIC OVERLAY NETWORKS CHAP. 7

ing is based on grouping semantically related nodes. In these networks, a node
first queries its semantically close peers before resorting to search methods that
span the entire network. In particular, we are interested in solutions whereseman-
tic relationships between nodes are captured implicitly. This capturing is generally
achieved through analysis of query results, leading to the construction ofa local
semantic listat each peer, consisting of references to other, semantically close
peers.

Only very recently has an extensive study been published on search methods in
peer-to-peer networks, be they structured, unstructured, or of a hybrid form [Ris-
son and Moors 2006]. This study reveals that virtually all peer-to-peer search
methods in semantic overlay networks follow an integrated approach towardsthe
construction of the semantic lists, while at the same time accounting for changes
occurring in the whole set of nodes. These changes involve the joining and leaving
of nodes, as well as changes in a node’s preferences.

The construction of semantic lists should result in highly clustered overlay
networks, reflecting users’ interests. These networks excel for searching content
when nothing changes. However, in realistic, dynamically changing networks, the
discovery and propagation of changes that may happenanywherein the network
is of vital importance. For this reason, overlay networks should also reflect de-
sirable properties of random graphs and complex networks in general [Albert and
Barab́asi 2002; Newman 2002]. These two conflicting demands generally lead to
complexity when integrating solutions into a single protocol.

Protocols for content-based searching in peer-to-peer networks should sepa-
rate these concerns. In particular, we advocate that when it comes to constructing
and using semantic lists, these lists should be optimized for search only, regard-
less of any other desirable property of the resulting overlay. Instead, aseparate
protocol should be used to handle network dynamics, and provide up-to-date in-
formation that will allow proper adjustments in the semantic lists (and thus leading
to adjustments in the semantic overlay network itself).

Along these lines, we employ the VICINITY /CYCLON framework, which is
designed to separate the two aforementioned issues. The VICINITY layer opti-
mizes the semantic lists for searching only. The CYCLON layer, offers a fully
decentralized service for delivering, in an unbiased fashion, information on new
events. We demonstrate the efficiency of our framework through extensive simula-
tions using traces collected from the eDonkey file-sharing network [Fessant et al.
2004].

SEC. 7.3 MODEL OUTLINE 153

7.2. MODEL OUTLINE

In our model each node maintains a dynamic list of semantic neighbors, called
its semantic list, of small fixed sizeℓsem. A node searches for a file in two phases.
First, by querying its semantic neighbors. Second, and only if no results were
returned from the first phase, the node resorts to the default search mechanism.

Our aim is to organize the semantic lists so as to maximize the hit ratio of the
first phase of the search. We will call this thesemantic hit ratio. We anticipate
that the probability of a neighbor satisfying a peer’s query is proportional to the
semantic proximity between the peer and its neighbor. We aim, therefore, at filling
a peer’s semantic list with itsℓsem semantically closest peers out of the whole
network.

We define the semantic proximity between two nodes as the number of com-
mon files they have. More formally, given two nodesP andQ, with file lists FP

andFQ, respectively, their semantic proximity is defined as:

SemProx(P,Q) = |FP

\

FQ|

The more common files two nodes have—therefore, the semantically closer they
are—the higher the value ofSemProx. Essentially, for each nodeP we are seeking
peersQ1,Q2, ...,Qℓsem for its semantic list, that maximize the sum:

ℓsem

∑
i=1

SemProx(P,Qi)

The VICINITY selection function S(k,P,D) (see Section4.2.2) is consequently,
defined based on the proximity functionSemProx. It simply sorts the nodes inD
based on their semantic proximity to nodeP, and selects thek closest ones.

7.3. GOSSIPING FRAMEWORK

In the context of the VICINITY /CYCLON framework, each node runs two pro-
tocols, VICINITY and CYCLON. Each protocol maintains a separate view of size
ℓvic and ℓcyc, respectively, and exchanges a different number of descriptors per
gossip exchange (i.e., has a different gossip length),gvic andgcyc, respectively.
The semantic list defined earlier, consists of theℓsemneighbors of closest seman-
tic proximity among the ones in the VICINITY view.

For the sake of demonstrating the importance of certain points in VICINITY ’s
design, we consider the following three versions of VICINITY :

154 SEMANTIC OVERLAY NETWORKS CHAP. 7

RANDOM V ICINITY This is the most naive of the three versions. When gossip-
ing, a node selects arandomsubset of descriptors from its VICINITY view
to send to the other peer.

SELECTIVE V ICINITY In this—better—version, a node selects and sends the
subset of descriptors from its VICINITY view that isoptimal for the recipi-
ent.

COMPLETE V ICINITY This is essentially the fully-fledged VICINITY protocol,
as defined in Chapter4. The sender selects and sends the descriptors that are
optimalfor the recipient, considering also descriptors from its CYCLON—in
addition to its VICINITY —view.

In terms of the generic gossiping skeleton that VICINITY follows (reproduced in
Fig.7.1for convenience), Figure7.2presents the formal description of the actions
taken by the threehooks. The only hook in which the aforementioned versions
differ is selectToSend().

In addition to these three VICINITY versions, we also examine a fourth con-
figuration, namely RANDOM V ICINITY withoutCYCLON. This is the only single-
layer configuration that we consider.

do forever {
wait(T time units)
incr. all descriptors’ age by 1
Q ← selectPeer()
remove Q from view
buf_send ← selectToSend()
send buf_send to Q
receive buf_recv from Q
view ← selectToKeep()

}

do forever {
receive buf_recv from Q
buf_send ← selectToSend()
send buf_send to Q
view ← selectToKeep()

}

Active thread Passive thread

Figure 7.1: The generic gossiping skeleton for CYCLON and VICINITY .

7.4. EXPERIMENTAL ENVIRONMENT AND SETTINGS

All experiments presented here have been carried out with PeerSim, an open
source simulator for P2P protocols, developed in Java at the University of Bologna [Peer-

SEC. 7.4 EXPERIMENTAL ENVIRONMENT AND SETTINGS 155

Hook Action taken
selectPeer() Select descriptor with the oldest age
selectToSend()

RANDOM Make a copy of the VICINITY view.
Add own descriptor with own profile and age 0.
Randomly selectgvic descriptors.

SELECTIVE Make a copy of the VICINITY view.
Add own descriptor with own profile and age 0.
Select the bestgvic descriptors forQ.

COMPLETE Merge the VICINITY and CYCLON views.
Add own descriptor with own profile and age 0.
Select the bestgvic descriptors forQ.

selectToKeep() Merge the VICINITY , CYCLON, and received views.
Select the bestℓvic descriptors forP.

Figure 7.2: Implementation of the generic gossiping skeleton hooks, for the 3
V ICINITY versions.

Sim].
To evaluate the construction of semantic overlays, we used real world traces

from the eDonkey file sharing system [eDonkey], collected by Le Fessant et al.
in November 2003 [Fessant et al. 2004]. A set of 11,872 world-wide distributed
peers along with the files each one shares is logged in these traces. A total number
of 923,000 unique files is being collectively shared by these peers.

In order to simplify the analysis of our system’s emergent behavior, we de-
termined equal gossiping periods for both layers. More specifically, once ev-
ery T time units each node initiates first a gossip exchange with respect to its
bottom (CYCLON) layer, immediately followed by a gossip exchange at its top
(V ICINITY) layer. Note that even though nodes initiate gossiping at universally
fixed intervals, they are not synchronized with each other. Similarly to previous
chapters, we study the evolutionary behavior in terms of cycles, where one cycle
is a period ofT time units.

A number of parameters had to be set for these experiments, listed here.

Semantic list size (ℓsem) In all experiments the semantic list consisted of the 10
semantically closest peers in the VICINITY view. As shown in [Handuru-
kande et al. 2004], a semantic list size ofℓsem= 10 provides a good tradeoff
between the number of nodes contacted in the semantic search phase and
the expected semantic hit ratio.

156 SEMANTIC OVERLAY NETWORKS CHAP. 7

View size (ℓvic, ℓcyc) For the view size selection, we are faced with the following
tradeoff for both protocols. A large view size provides higher chancesof
making better neighbor selections, and therefore accelerate the construction
of (near-)optimal semantic lists. On the other hand, the larger the view size,
the longer it takes to contact all peers in it, resulting in the accumulation of
older—and therefore more likely to be invalid—links. Of course, a larger
view also takes up more memory, although this is generally not a significant
constraint nowadays.

Considering this tradeoff, and based on experiments not further described
here, we fixed the view size to 100 as a basis to compare different configu-
rations. When both VICINITY and CYCLON are used, they are allocated 50
view entries each.

Gossip length (gvic, gcyc) The gossip length, that is, the number of descriptors
gossiped per gossip exchange per protocol, is a crucial factor for theamount
of bandwidth used. This becomes of greater consequence in this applica-
tion, considering that a descriptor carries the file list of its respective node.
So, even though exchanging more descriptors per gossip exchange allows
information to disseminate faster, we are inclined to keep the gossip lengths
as low as possible, as long as the system’s performance is reasonable.

Again, for the sake of comparison, we fixed the total gossip length to 6 de-
scriptors. When both VICINITY and CYCLON are used, each one is assigned
a gossip length of 3.

Gossip period (T) The gossip period is a parameter that does not affect the pro-
tocol’s behavior. The protocol evolves as a function of the number of mes-
sages exchanged, or, consequently, of the number of cycles elapsed. The
gossip period only affects how fast the protocol’s evolution will take place
in time. The single constraint is that the gossip periodT should be ade-
quately longer than the worse latency throughout the network, so that gos-
sip exchanges are not favored or hindered due to latency heterogeneity. A
typical gossip period would be 1 minute, even though this does not affect
the following analysis.

Figure 7.3 summarizes the settings the four configurations we experiment
with.

SEC. 7.5 PERFORMANCEEVALUATION 157

ℓvic gvic ℓcyc gcyc

RANDOM V ICINITY 100 6 - -
RANDOM V ICINITY + CYCLON 50 3 50 3

SELECTIVE V ICINITY + CYCLON 50 3 50 3
COMPLETE V ICINITY + CYCLON 50 3 50 3

Figure 7.3: The four configurations we compare.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500

av
g.

 s
em

an
tic

 li
st

 q
ua

lit
y

cycles

Random Vicinity
Random Vicinity + Cyclon

Selective Vicinity + Cyclon
Complete Vicinity + Cyclon

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 600 700 800 900 1000 1100

av
g.

 s
em

an
tic

 li
st

 q
ua

lit
y

cycles

Random Vicinity
Random Vicinity + Cyclon

Selective Vicinity + Cyclon
Complete Vicinity + Cyclon

(a) (b)

Figure 7.4: (a) Convergence of sem. views’ quality. (b) Evolution of semantic
lists’ quality for a sudden change in all users’ interests at cycle 550.

7.5. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our framework in five different
settings.

7.5.1. Convergence Speed on Cold Start

To evaluate the convergence speed of our algorithm, we first test how quickly
it groups semantically related peers, when starting with a semantically-unaware
network.

The objective, as imposed by the proximity function, is for each node to dis-
cover theℓsempeers that have the most common files with it. We define a node’s
semantic list qualityto be the ratio of the number of common files shared with its
currentℓsemsemantic neighbors, over the number of common files it would share
with its ℓsemoptimal semantic neighbors.

Figure7.4(a) shows the average semantic list quality as a function of the cycle
for four distinct configurations. In favor of comparison fairness, theview size and

158 SEMANTIC OVERLAY NETWORKS CHAP. 7

gossip length are 50 and 3, respectively, in each layer, for all configurations. The
only exception is the first configuration, which has a single layer. In this case, the
view size and gossip length are 100 and 6, respectively. All experiments start with
each node knowing 5 random other ones, simply to ensure initial connectivity in
a single connected cluster.

In the first configuration, RANDOM V ICINITY is running stand-alone. The
progress of the semantic lists’ quality is rather steep in the first 100 cycles, but
as nodes gradually concentrate on their very own neighborhood, gettingto know
new, possibly better peers becomes rare, and progress slows down.

In the second configuration, a two-layered approach consisting of RANDOM

V ICINITY and CYCLON is running. The slow start compared to stand-alone
V ICINITY is a reflection of the smaller VICINITY view (3 as opposed to 6). How-
ever, the two-layered approach’s advantage becomes apparent later, when CY-
CLON keeps feeding the RANDOM V ICINITY layer with new, uniformly randomly
selected nodes, maintaining a higher progress rate, and outperforming stand-alone
V ICINITY in the long run.

In the third configuration, SELECTIVE V ICINITY demonstrates its contribu-
tion, as progress is significantly faster in the initial phase of the experiment. This
is to be expected, since the descriptors sent over in each SELECTIVE V ICINITY

communication, are the ones that have been selected as the semantically closest to
the recipient.

Finally, in the fourth configuration, COMPLETE V ICINITY keeps the progress
rate high even when the semantic lists are very close to their optimal state. This
is due to the broad random sampling achieved by this version. In every commu-
nication, a node is exposed to the best peers out of 50randomones, in addition to
50 peers from its neighbor. In this way, semantically related peers that belong to
separate semantic clusters quickly discover each other, and subsequently the two
clans merge into a single cluster in practically no time.

7.5.2. Adaptivity to Changes of User Interests

In order to test our protocol’s adaptivity to dynamic user interests, we ranex-
periments where the interests of some users changed. We simulated the interest
change by picking a random pair of nodes and swapping their file lists in the
middle of the experiment. At that point, these two nodes found themselves with
semantic lists unrelated to their (new) file lists, and therefore had to gradually
climb their way up to their new semantic vicinity, and replace their useless links
by new, useful ones.

Once again, we present the worst case—practically unrealistic—scenario, of
all nodes changing interests at once, at cycle 550 of the experiment of figure
7.4(a). The evolution of the average semantic list quality from the moment when

SEC. 7.5 PERFORMANCEEVALUATION 159

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40 45 50

se
m

an
tic

 h
it

ra
tio

 (
%

)

cycles

gossip length 5
gossip length 3
gossip length 1

Figure 7.5: Semantic hit ratio, for gossip lengths 1, 3, and 5 in each layer.

all nodes change interests, is presented in figure7.4(b). The faster convergence
compared to figure7.4(a) is due to the fact that views are already fully filled up at
cycle 550, so nodes have more choices to start looking for good candidate neigh-
bors.

Even though this scenario is very unrealistic, it demonstrates the power of our
protocol in adapting to even massive scale changes. This adaptivenessis due to
the priority given to newer descriptors inselectToKeep(), which allows a
node’s descriptors with updated semantic information to replace older descriptors
of that node fast.

7.5.3. Effect on Semantic Hit Ratio

In order to further substantiate our claim that semantic based clustering endorses
P2P searching, we conducted the following experiments. A randomly selected
file was removed fromeachnode, and the system was run considering proximity
based on the remaining files. Then, each node did a search on the file it was
missing. We measured the semantic hit ratio to be over 36% for a semantic list of
size 10.

Figure7.5 presents the semantic hit ratio as a function of the cycle. Three
experiments are shown, with gossip lengths forbothlayers set to 1, 3, and 5. Note
that computation of the hit ratio for each cycle was made offline, without affecting
the mainstream experiment’s state.

160 SEMANTIC OVERLAY NETWORKS CHAP. 7

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350 400 450 500

pe
rc

en
ta

ge
 o

f n
od

es

cycles

50% of target links found
90% of target links found

All target links found

Figure 7.6: CDF of the speed by which the semantic list of a joining node is filled
with optimal neighbors.

7.5.4. Single Node Joins

To examine how fast new nodes join an already semantically clustered network,
we conducted a series of experiments with COMPLETE V ICINITY . Each exper-
iment started with a network from which one randomly selected node had been
removed. After the network converged, we added the missing node and mea-
sured the number of cycles it took to fill, respectively 50%, 90%, and 100%of
its semantic list withoptimal neighbors. The respective cumulative distribution
function graphs are shown in Figure7.6.

These experiments clearly show that the semantic list is rapidly filled with
optimal neighbors for the vast majority of the nodes, although some may take
considerably more time. It can also be seen that, although discoveringall best
neighbors may take arguably long for some nodes, it takes significantly fewer
cycles to discovermostbest neighbors (CDFs for finding 50% and 90% of best
neighbors shown).

7.5.5. Behavior under Node Churn

To investigate the behavior of our algorithm as nodes regularly join and leave
the network, we evaluated COMPLETE V ICINITY under different levels of node
churn.

For these experiments, we considered an initial converged network of 10,000
nodes. During each cycle we removedn nodes and replaced them withn other
ones. Every node in the system corresponded to one node in the eDonkey traces
(i.e., stores the same files), which contained a total of 11,872 nodes. Therefore, at

SEC. 7.6 BANDWIDTH CONSIDERATIONS 161

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 500 1000 1500 2000 2500 3000 3500

op
tim

al
 a

liv
e

ne
ig

hb
or

s
in

 th
e

se
m

. l
is

t

cycles

0.2% churn
1.0% churn
5.0% churn

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 500 1000 1500 2000 2500 3000 3500

al
iv

e
ne

ig
hb

or
s

in
 th

e
V

ic
in

ity
 v

ie
w

cycles

0.2% churn
1.0% churn
5.0% churn

(a) (b)

Figure 7.7: (a) The average number of optimal alive neighbors in the semantic list.
(b) The average number of alive neighbors in the VICINITY view.

any moment in time a random subset of 10,000 out of 11,872 nodes was active,
and the remaining 1872 nodes were down. The analysis of churn rates from real-
world Gnutella traces [Saroiu et al. 2002, 2003] shows that the set of active nodes
changes by approximately 0.2% every 10 seconds. In other words, if weassume a
cycle length of 10 seconds, a realistic value forn is 20. We have also experimented
with larger churn rates, namely 1% and 5%, which correspond to a cycle duration
of 50 and 250 seconds, respectively.

The results of these experiments are shown in Figure7.7(a) in which the av-
erage number of optimal alive neighbors in semantic lists under different churn
rates is plotted. We see that as the churn rate increases, the semantic lists gen-
erally remain polluted with links to non-optimal neighbors. This can be easily
explained by considering the VICINITY view (from which the neighbors for the
semantic lists are extracted). In Figure7.7(b), we see that under high churn the
view contains a relatively large fraction of links to dead nodes. As these inactive
links may refer to nodes with a large number of common files, they prevent estab-
lishing optimal links with nodes that are alive but share a smaller number of files.
Moreover, when a node is reborn, it can take some time for other nodes, which
now may have non-optimal semantic lists, to establish links to it (see Fig.7.6).

7.6. BANDWIDTH CONSIDERATIONS

Due to the periodic behavior of gossiping, the price of having rapidly con-
verging and accurate protocols may inhibit a high usage of network resources

162 SEMANTIC OVERLAY NETWORKS CHAP. 7

(i.e., bandwidth).

In each cycle, a node gossips on average twice (exactly once as an initiator,
and on average once as a responder). In each gossip 2· (gvic + gcyc) descriptors
are transferred to and from the node, resulting in a total traffic of 4· (gvic + gcyc)
descriptors for a node per cycle. An descriptor’s size is dominated by thefile
list it carries. A single file is identified by its 128-bit (16-byte) MD4 hash value.
Analysis of the eDonkey traces [Fessant et al. 2004] revealed an average number
of 100 files per node (more accurately, 99.35). Therefore, a node’sfile list takes
on average 1,600 bytes. So, in each cycle, the total number of bytes transferredto
andfrom the node is 6,400· (gvic +gcyc).

Forgvic = gcyc = 3, the average amount of data transferred to and from a node
in one cycle is 38,400 bytes, while forgvic = gcyc= 1, it is just 12,800. Maintaining
almost optimal semantic lists requires frequent gossiping to account for the churn.
Based on the traces, to achieve 90% optimality of the semantic list, the churn rate
must be limited to approximately 0.2%. Consequently, the gossip periodT must
be equal to 10 seconds, which translates to an average bandwidth of 3840 bytes
per second forgvic = gcyc = 3, and 1280 bytes per second forgvic = gcyc = 1.
However, if 80% optimality is acceptable, the gossip period can be reduced to50
seconds, which yields 768 and 256 bytes per second, respectively, afactor of 5
improvement traded for only 10% quality degradation.

We consider such a bandwidth consumption to be rather small, if not negligi-
ble compared to the bandwidth used for the actual file downloads. It is, in fact, a
small price to pay for relieving the default search mechanism from about 35% of
the search load, which is often significantly higher (e.g., flooding or random-walk
search). Moreover, the bandwidth can be further reduced by employing techniques
such as Bloom filters [Bloom 1970] and on-demand fetching of file lists, instead
of associating a full file list with each node descriptor.

7.7. DISCUSSION AND RELATED WORK

To the best of our knowledge, all earlier work on implicit building of semantic
overlays relies on using heuristics to decidewhichof the peers that served a node
recently are likely to be useful again in future queries [Sripanidkulchai et al. 2003;
Voulgaris et al. 2001; Handurukande et al. 2004].

However, all these techniques inhibit a weakness that challenges their applica-
bility to the real world. They all assume astaticnetwork, free of node departures,
which is a rather strong assumption considering the highly dynamic nature of file-
sharing communities. Also, it is not clear how they perform in the presence of
dynamic user preferences.

SEC. 7.7 DISCUSSION ANDRELATED WORK 163

Moreover, as opposed to the existing solutions, our algorithm can, to some ex-
tent, help against so-called free-riders in the P2P file sharing networks [Adar and
Huberman 2000]. Free-riders provide no files to be downloaded by other users,
but still use the network to obtain files that are interesting for themselves. Be-
cause of a lack of shared files, VICINITY does not create any meaningful semantic
lists for such misbehaving nodes. This, combined with heuristics forbidding fre-
quent usage of the backup search algorithms, minimizes the number of successful
searches for free-riders, and consequently discourages the free-riding practice.

Regarding proximity-based P2P clustering, our work comes close to the T-
Man protocol [Jelasity and Babaoglu 2005], which has been developed indepen-
dently. Although there were significant differences with the original T-Man proto-
col, the most recent version shows a strong similarity with our work. An important
difference remains that the VICINITY /CYCLON framework offers higher flexibil-
ity in controlling bandwidth, by arbitrarily deciding on the number of descriptors
that need to be exchanged. This becomes important in this application, where
a node descriptor contains the node’s file list. More important, however, is that
we show that the VICINITY /CYCLON topology construction framework can be
successfully applied to forming semantic overlays for searching in peer-to-peer
file-sharing systems. Such an evaluation has not yet been done before.

Note that we chose a rather simple, yet intuitive proximity function to test our
protocol with. Our goal was to demonstrate the power of the VICINITY /CYCLON

framework in forming a semantic overlay network based ona proximity function.
Even though much richer proximity functions could have been applied, it wasout
of the scope of this research.

Concluding, in this work we introduced the idea of applying epidemics to
proactively build and dynamically maintain semantic lists in a large-scale file-
sharing system. Specifically, we showed that the VICINITY /CYCLON two-layered
approach is the appropriate way to build such a service.

ACKNOWLEDGEMENTS

We would like to thank Fabrice Le Fessant for providing us with the eDonkey2000
traces [Fessant et al. 2004] he gathered in November 2003.

164 SEMANTIC OVERLAY NETWORKS CHAP. 7

CHAPTER 8

SUB-2-SUB: Purely P2P
Publish/Subscribe

Publish/Subscribesystems are designed to disseminate messages (events), from
nodes issuing events (publishers), to nodes interested in receiving events (sub-
scribers). Subscribers typically register with the system the type of events they
are interested in. Publishers simply post events. Subsequently, it is the system’s
responsibility to deliver the right events to the right places. That is, an event should
be delivered toall its subscribers andno one else.

Consider, for instance, a house rental service. Prospective renters subscribe
to the service by setting their search criteria. Such criteria may include their pre-
ferred neighborhood(s), the price range they are willing to pay, the suitable num-
ber of bedrooms, sufficient area, etc. Some subscribers may even setonly someof
the aforementioned criteria, should the rest be irrelevant to their decision.Home
owners, on the other hand,publishannouncements (eventsin publish/subscribe
terminology) advertising their property for rent. The system is responsiblefor de-
liveringeachrental announcement toall prospective renters whose criteria classify
it as a potentially suitable choice.

In this work we address the problem of constructing scalable content-based
publish/subscribe systems. Subscriptions can range from a simple specification of
merely the type of an event to a specification of the value ranges that an event’s
attributes can have. Notably the latter poses potential scalability problems.

Structured peer-to-peer systems can provide scalable solutions to publish/subscribe
systems with simple subscription patterns. For complex subscription types their
applicability is less obvious. In this chapter, we present SUB-2-SUB, a collab-
orative self-organizing publish/subscribe system deploying an unstructured over-
lay network. SUB-2-SUB relies on an epidemic-based algorithm in which peers
continuously exchange subscription information to get clustered to similar peers.

166 SUB-2-SUB: PURELY P2P PUBLISH/SUBSCRIBE CHAP. 8

In contrast to many existing approaches, SUB-2-SUB supports both value-based
and interval-based subscriptions. Simulations of SUB-2-SUB on synthetic and
reusable workloads convey its good properties in terms of routing efficiency, fair-
ness, accuracy and efficiency.

A shorter version of this chapter appears in [Voulgaris et al. 2006].

8.1. OVERVIEW

Peer-to-peer (P2P) systems have been identified as the key to scalability and
their self-organizing properties make them natural candidates for large-scale pub-
lish/subscribe systems design. Several efficient implementations of P2P topic-
based publish/subscribe systems have been proposed [Castro et al. 2002; Banerjee
et al. 2002]. Unfortunately, it is not obvious how to devise a scalable P2P solution
for content-based publish/subscribe systems.

Structured P2P overlays [Rowstron and Druschel 2001a; Ratnasamy et al.
2001a; Stoica et al. 2001] have often been favored over unstructured ones to
implement content-based publish/subscribe systems. The idea is to map the at-
tribute space of the latter to the identifier space of the former. At one extreme,
each attribute is associated with one specific peer. Although this provides efficient
routing to interested subscribers, peers hosting popular attributes are quickly over-
loaded. At the other end of the spectrum, in an attempt to discretize the rangesof
attributes, a peer is made responsible for a specific(attribute, value)pair. In this
case, attaining a scalable implementation for range subscriptions becomes prob-
lematic.

In this work, we step away from structured overlays and propose a fullyde-
centralized and self-organizing approach based on unstructured overlays to deal
efficiently with both exact and range subscriptions. Key to our approach, which
is called SUB-2-SUB, is that subscribers to the same events are automatically
clustered. SUB-2-SUB leverages the overlapping intervals of range subscriptions
and creates an unstructured overlay reflecting the structure of the attribute space
and that of the set of subscriptions. Once subscriptions are clustered, events are
directly posted to the proper cluster where they are efficiently disseminated.

A key issue is that SUB-2-SUB is highly reactive to changes in the set of sub-
scriptions. To this end, it deploys an enhanced epidemic protocol based on the
V ICINITY and PEER SAMPLING SERVICE topology construction framework, to
continuously cluster subscribers based on their subscriptions. Clustering is based
on a proximity metric in the attribute space, which results in nodes of similar
subscriptions clustering with each other. A similar process is followed to navi-
gate publishers to clusters of matching subscriptions. Publishers progress greedily

SEC. 8.3 ISSUES INPUBLISH / SUBSCRIBESYSTEMS 167

across the network according to the same algorithm and proximity metric, even-
tually reaching the cluster that containsexactlythe subscribers which the event
should be delivered to. Moreover, within such a cluster, subscribers are loosely
organized into a distributed data structure that enables efficient event dissemina-
tion.

8.2. ISSUES IN PUBLISH / SUBSCRIBE SYSTEMS

A number of issues are of interest when designing a publish/subscribe system.
It is important for the remaining of the chapter to list the most significant issues
that characterize the quality of a publish/subscribe system.

Hit ratio The hit ratio is defined as the percentage of subscribers that receive an
event, over the total number of subscribers interested in it. It is a metric of
the penetration of events. Ideally, an event should be delivered toall nodes
interested in it (hit ratio 100%), or at least to as many of them as possible.

Spam ratio The spam ratio is defined as the percentage of subscribers that re-
ceive an event although it wasnot matching their subscriptions, over the
total number of subscribers interested in the event. Delivering an event to
subscribers not interested in it wastes network and processing resources.
Therefore, the spam ratio should be kept as low as possible, ideally 0%.

Dissemination speedThe speed at which an event dissemination completes. The
two main factors governing dissemination speed are (a) the average delay
in forwarding messages (processing delay on nodes plus network latency),
and (b) the number of hops messages take to reach the most distant nodes.
In our evaluation we focus on the latter factor.

8.3. SYSTEM MODEL

In brief, we consider a conjunctive attribute-based publish/subscribe system
with N floating-point attributes that supports subscriptions on bothexactattribute
values andranges.

More formally, we assume a fixed numberN of attributes,A1, . . . ,AN, with
values inR (the set of real numbers). Attributes can alternatively be assigned val-
ues of any type that can be directly mapped toR, such as integers, enumerations,
boolean values, or strings.

Subscriptions are conjunctions of predicates on one or more attributes. A
predicate can denote either an exact value (e.g.,Ai = v), or a continuous range

168 SUB-2-SUB: PURELY P2P PUBLISH/SUBSCRIBE CHAP. 8

attribute value

no
de

 ID

A

B

D

C

Event e
(a=10)

P

R

S

ℓ

Figure 8.1: A set of subscriptions and an event.

of values (e.g.,Ai ∈ [vmin,vmax]). A subscription can have at most one predicate
per attribute. Multiple exact values or multiple noncontinuous subranges on a
single attribute can be modeled as multiple separate subscriptions. Attributes not
referred to in a subscription (wildcards) are assumed to cover the whole attribute
space, that is, their value is indifferent to the subscriber. An example subscription
for a 5-attribute system isS: 〈A1, A2, A3, A4, A5〉 = 〈∗, 30, ∗, ∗, [2.2,2.7]〉

Events areN-sized vectors specifying exact values forall attributes. An ex-
ample of an event for a 5-attribute system isE : 〈A1, A2, A3, A4, A5〉 =
〈5, 3, −2.5, 20, 1.87〉.

In the remainder of this chapter, we will consider range subscriptions, i.e.,
subscriptions composed of a set of predicates, each specifying a range of values.
Exact-value predicates are considered as a special, and simpler, case of a range
subscription.

Also, nodes whose subscriptions match a particular event will be referred to
as the event’smatching subscribers.

8.4. SUB-2-SUB IN A NUTSHELL

SUB-2-SUB is an autonomous, self-organizing P2P event-notification system
that supports multi-attribute subscriptions.Autonomousimplies that the dissem-
ination of events to all interested nodes is accomplished by the cooperation of
interested nodes themselves, eliminating any dependency on relay serversor ded-

SEC. 8.4 SUB-2-SUB IN A NUTSHELL 169

xx
xx
xx
xx
xx

xx
xx
xx
xx
xx

attribute value

no
de

 ID

A

B

D

C

P

R

S

ℓ

Figure 8.2: Partitioning of an one-dimensional event space in homogeneous sub-
spacesHi .

icated elements.Self-organizingrefers to the fact that nodes organize themselves
in a structure that enables their cooperation for event dissemination in a com-
pletely decentralized manner. The self-organizing property of SUB-2-SUB relies
on the use of the VICINITY /CYCLON topology construction framework to cluster
peers of similar subscriptions. Its efficiency relies on the fact that overlapping
subscriptions are leveraged so that(i) only interested subscribers are reached by
an event and(ii) subscribers do not miss any event matching their subscription.

Clustering overlapping subscriptions SUB-2-SUB forms an unstructured over-
lay network in which each peer is associated with one subscription. Multiple
subscriptions are handled by running multiple virtual peers on a single physical
node. In the context of a customized version of the VICINITY /CYCLON frame-
work, peers periodically exchange information to discover peers with similarsub-
scriptions to form clusters with. Note that the resulting clusters do not have ex-
plicit boundaries. Figure8.1 depicts an example of a set of subscriptions for a
single attribute scheme. Each line represents a range subscription. The epidemic
algorithm ensures that peers are automatically clustered so that when an event
specifying a value for attributea (e.g.,e : 〈a = 10〉 in Figure8.1) is published, all
interested subscribers (A, C, andD in Figure8.1) get it.

Partitioning the event space A key observation underlying SUB-2-SUB’s de-
sign is that every peerP’s subscription specifies anN-dimensionalrectangular
subspaceSP ⊆ R

N, which we refer to asP’s subscription subspace. As a conse-

170 SUB-2-SUB: PURELY P2P PUBLISH/SUBSCRIBE CHAP. 8

quence, we are interested only in those events that fall intoS =
S

SP. To sim-
plify the SUB-2-SUB model, weconceptuallypartitionS into disjoint subspaces
H1,H2, . . ., which we namehomogeneous subspaces:

[

Hi = S

and
∀ i 6= j : Hi ∩H j = /0

All events belonging to a given homogeneous subspaceHi have the exact same
set of matching subscribers (hence the namehomogeneousfor these subspaces).
More formally:

∀ i,P : [Hi ∩SP 6= /0]⇒ [Hi ⊆ SP]

Furthermore, we demand that the set of homogeneous subspacesHi is minimal:
there is no partitioning with fewer parts that can satisfy the aforementioned con-
straint.

The notion of homogeneous subspaces provides a level of abstraction:it per-
mits us to think in terms of groups of events—that have the same set of matching
subscribers—rather than for single events individually. Figure8.2shows how the
event space of the example presented in Figure8.1 is partitioned in homogeneous
subspaces.

The ultimate goal in SUB-2-SUB is, for each homogeneous subspaceHi , to
cluster its nodes in such a way that an evente∈Hi can be efficiently disseminated
to all of them. Essentially, we want to maintain a connected overlay (as we will
see, a bidirectional ring) for every homogeneous subspaceHi . If that holds, then
any possible event in the system can be efficiently disseminated to all its matching
subscribers. To this end, we let peers periodically exchange their subscriptions. If
two peersP andQ note thatSPQ≡ SP∩SQ 6= /0, they will record this fact and main-
tain references to each other (how this is done is described below). For example
in Figure8.2, peersP andQ satisfy the above condition for a given range and get
connected. When discovering a third peer,R, with SPQR≡ SP∩SQ∩SR 6= /0, peers
P, Q andRwill further organize into a structure associated withSPQRsuch that an
evente∈ SPQR will be efficiently disseminated to the three peers. BothP andQ
will still maintain references to each other, but now for the subspaceSPQ−SPQR,
if not empty. Figure8.2 illustrates this process: whenR joins the network it gets
connected toP andQ for the shaded range whileP andQ remain connected for
the hatched range.

The publisher of an evente joins the overlay identically to subscribers, and
will eventually find the setHi whereebelongs to. At that point,e is disseminated
to the members associated withHi . Note that, providedS is indeed partitioned
along the lines we just described,e will reach only the nodes that are interested

SEC. 8.5 THE SUB-2-SUB DISSEMINATION OVERLAY 171

in it, and no others. This method of letting publishers locate the relevant sub-
scribers is primarily elegant, but not necessarily efficient. Higher efficiency can
be achieved through, for example, greedy routing algorithms. We do not consider
such alternatives in this dissertation.

8.5. THE SUB-2-SUB DISSEMINATION OVERLAY

In Chapter6 we explored epidemic schemes for group communication. Such
schemes provide strong probabilistic guarantees for the dissemination of messages
to all members of an overlay, demonstrating tolerance to churn and node failures.
Here we are looking at employing one of these techniques, namelyhybrid dissem-
inationand the RINGCAST algorithm (see Section6.5), in selectivelydisseminat-
ing events to all their matching subscribers.

What differentiates dissemination in publish/subscribe systems from the gene-
ric dissemination model, is that there is nosingleset of target nodes. Instead, each
event needs to be disseminated to a different set of nodes, consisting ofthe event’s
matching subscribers. Group communication, therefore, should be applicable to
any possible set of matching subscribers.

This is exactly what lies in the core of SUB-2-SUB: A dissemination over-
lay that enables group communication amongexactlythe matching subscribers of
any given event, independently. Considering that events within a homogeneous
subspace have the same set of matching subscribers, the SUB-2-SUB dissemina-
tion overlay should enable group communication among nodes with subscriptions
intersectingHi , for everyHi independently.

Let Ni denote the set of nodes whose subscriptions intersect homogeneous
subspaceHi . In Section6.5.1we saw that organizing a group of nodes in a RING-
CAST overlay, that is, a bidirectional ring augmented by random shortcuts, enables
inexpensive and efficient dissemination of messages among them. The major is-
sue that SUB-2-SUB needs to solve is to organize the nodes ineachsetNi in
a RINGCAST overlay. Along these lines, each node is equipped with a random
sequence IDuniformly drawn from a large identifier space. If nodesP and Q
are both inNi , and there is no other node inNi whose sequence ID lies between
those ofP andQ (using modulo arithmetic), they will keep a link to each other.
These links, known asring links, organize nodes of any given homogeneous sub-
space in a bidirectional ring. In addition to ring links, nodes also maintain links to
random other nodes in the same setNi , known as(random) overlapping-interest
links. Figure8.3shows the links forming a ring for each homogeneous subspace.
Random overlapping-interest links are omitted for clarity.

Often, the subscriptions of two nodes may overlap in multiple homogeneous

172 SUB-2-SUB: PURELY P2P PUBLISH/SUBSCRIBE CHAP. 8

attribute value

no
de

 ID

Figure 8.3: The conceptual SUB-2-SUB dissemination overlay. For each homoge-
neous subspace nodes are linked in a ring structure. Only thering linksare shown.
Random overlapping-interestlinks are omitted for clarity.

attribute value

no
de

 ID

Figure 8.4: The actual SUB-2-SUB dissemination overlay. For any possible event
all matching subscribers are linked in a ring structure. However, no multiple links
between the same two nodes are kept. Only thering links are shown.Random
overlapping-interestlinks are omitted for clarity.

SEC. 8.5 THE SUB-2-SUB DISSEMINATION OVERLAY 173

Attribute value

se
qu

en
ce

 ID

Attribute value

se
qu

en
ce

 ID

Attribute value

se
qu

en
ce

 ID

(a) (b) (c)
Random links Overlapping-interest links Ring links

(PEER SAMPLING SERVICE) (V ICINITY) (V ICINITY)

Figure 8.5: The three sets of links each subscriber should maintain. Shaded areas
denote the areas where links of the respective type are appropriate (for the given
subscriber).

subspaces, leading to multiple links between them, as shown in Figure8.3. In
reality, no multiple links are allowed between two nodes. This results in theactual
SUB-2-SUB dissemination overlay for our example, shown in Figure8.4.

These observations lead to the following three types of links:

Random links These are links to randomly selected peers from the whole net-
work. They are needed to maintain the network connected, so that pub-
lishers and new subscribers can navigate to their appropriate homogeneous
subspace irrespectively of the node they join the network through.

Overlapping-interest links They reflect the similarities between subscriptions
and are used to send published events to random other interested peers (and
to speed up event dissemination).

Ring links These links organize nodes of each homogeneous subspaceHi in a
ring, ensuring that events belonging toHi reach all matching subscribers by
means of the respective ring.

Figure8.5 depicts these three types of links, for a set of subscriptions over one
attribute.

8.5.1. Spreading Events

Given the dissemination overlay described above, publishing events is a simple
task. All a publisher has to do is locateany one matching subscriber for its po-
tential event(s), and deliver the event(s) to it. From that point on, dissemination is
taken care of by the matching subscribers themselves.

174 SUB-2-SUB: PURELY P2P PUBLISH/SUBSCRIBE CHAP. 8

Subscribers disseminate events by means of the RINGCAST algorithm, pre-
sented in Section6.5.1. In particular, we assume that each subscriber is running
a daemon thread listening to incoming events and forwarding them accordingly.
The daemon thread is activated when a node receives an event. It firstlooks up the
node’s recent event history. Previously seen events are ignored. New events are
delivered to the application, and subsequently forwarded in two respects. First, an
event is forwarded to the node’s two adjacent neighbors (if any) alongthe event’s
ring. Second, it is forwarded along a small number (typically only one or two) of
additionalrandom shortcuts. Random shortcuts are links to matching subscribers,
picked randomly among the overlapping-interest neighbors that match this partic-
ular event (if any). Obviously, a node does not send an event back along the same
link it received it through.

Four facets of the dissemination algorithm are worth noting, namely its behav-
ior with respect tohit ratio, propagation speed, spam ratio, andload balancing.

Hit ratio and propagation delay are dealt with by ring links and random short-
cuts, respectively. In brief, forwarding along ring links guarantees that events are
sequentially propagated toall corresponding matching subscribers, achieving a
hit ratio of 100%. Random shortcuts to matching subscribers are followed only
to boost propagation speed. Indeed, following the ring links alone requires linear
time to cover all interested nodes. By each node forwarding incoming eventsto
as few as one random matching node, dissemination completes in close to loga-
rithmic time. A thorough evaluation of the RINGCAST algorithm’s efficiency is
presented in Section6.6.

Spam is entirely out of the question in this dissemination algorithm. Clearly,
no node forwards an event to another node, unless the latter is interestedin that
event. The only case a node may receive spam messages, is if it has recently
changed its subscription, and its updated subscription has not yet spread enough.

Finally, with respect to load balancing, two points are worth emphasizing.
First, no dissemination load is imposed on irrelevant subscribers. Second,load is
evenly balanced across matching subscribers, as each of them receives an event
once or a few more times, and upon first reception forwards it to the same small
number of nodes: up to two adjacent neighbors, and a few random ones.

8.6. BUILDING THE DISSEMINATION OVERLAY

From our previous discussion, the publish/subscribe problem has evidently
turned into atopology constructionandmaintenanceproblem. We handle it by
means of the VICINITY /CYCLON framework for topology construction, presented
in Chapter4.

SEC. 8.6 BUILDING THE DISSEMINATION OVERLAY 175

Vicinity
(overlapping-interest links)

Peer Sampling Service
(random links)

Vicinity
(ring links)

Figure 8.6: The SUB-2-SUB Architecture.

The SUB-2-SUB architecture explicitly sets a dual goal. Apart from random
links to maintain connectivity, subscribers are required to dynamically maintain
two types of links: overlapping-interest links, and ring links. Although this clearly
suggests employing two instances of VICINITY , it is not the sole reason for doing
so.

Discovering nodes with overlapping interests comprises a filtering over all
participating nodes, based on a single criterion: relevance of subscriptions. As we
will see, this filtering can be directly handled by VICINITY , given the appropriate
selection function. Selecting a node’s ring neighbors is more specific: theyneed to
be of overlapping interest, but in addition we also need to consider their sequence
ID. Selection of ring neighbors, thus, comprises a further filtering over anode’s
overlapping-interest neighbors. Consequently, discovering a node’s overlapping-
interest neighbors is a crucial step to discovering its ring neighbors too.

Given the aforementioned design considerations, we combine two instances
of V ICINITY on top of a single PEER SAMPLING SERVICE instance, resulting in
the architecture depicted in Figure8.6. Each layer is a gossiping protocol in itself,
communicating directly with the respective layer of other nodes, as shown in Fig-
ure8.7. The sole interaction between layers is by means of link recommendations,
from lower to higher layers.

Note that ring links are indifferent to publishers. Indeed, publishers build
views for only random and overlapping-interest links, and gossip greedily (as fast
as they can) to reachanymatching subscriber, independently of its sequence ID.
As we will see in Section8.7, this permits them to find a matching subscriber in
a very small number of steps. If more steps than a small threshold elapse, they

176 SUB-2-SUB: PURELY P2P PUBLISH/SUBSCRIBE CHAP. 8

Vicinity
(overlapping)

Peer Sampling
(random links)

Vicinity
(ring links)

Vicin ity
(overlapping)

Peer Sampling
(random links)

Vicin ity
(ring links)

Vicin ity
(overlapping)

Peer Sampling
(random links)

Vicin ity
(ring links)

Vicinity
(overlapping)

Peer Sampling
(random links)

Vicinity
(ring links)

gossip

go
ss

ip
gossip

Figure 8.7: Layered communication. Each layer of a node gossips exclusively
to the respective layer of other nodes. Interaction between layers is restricted to
passing around links within a single node.

SEC. 8.6 BUILDING THE DISSEMINATION OVERLAY 177

can safely assume that no subscriber in the whole network is interested in their
event(s).

In the following three sections we will explain in detail the operation of each
layer and the way they interact.

8.6.1. Building Random Links

Random links are handled by the bottom layer in our design, which consists of the
PEER SAMPLING SERVICE, studied in Chapter3. Its purpose is twofold. First, it
keeps the whole set of subscribers connected in a single partition, even inthe pres-
ence of churn or large scale failures. Connectivity is crucial to let publishers and
new subscribers find their way to their appropriate neighborhood sets, irrespec-
tively of wherethey initially joined the network. Second, it constitutes a source
of links selected uniformly at random from the whole network. Random linksdo
not play a direct role in event dissemination, but are fundamental for VICINITY

(in this case for both instances of it), as we have seen in Chapter4.

8.6.2. Building Overlapping-Interest Links

Overlapping-interest links are discovered by the middle layer, consisting of the
V ICINITY protocol. The operation of VICINITY has been studied in Chapter4.

Of particular interest is the selection function we apply here. It is based on
the notion ofsubscription distance, which we introduce as a measure of subscrip-
tion similarity. The subscription of a node defines an N-dimensional rectangle,
which we will refer to as itshyper-rectangle. We define the distance between two
subscriptions to be 0 (zero) if they intersect (overlapping-interest nodes), or the
Euclidean distance between their hyper-rectangles otherwise.

More formally, the distance between two subscribersP andQ with subscrip-
tions

subscription ofP : Ai ∈ [pmin
i , pmax

i], i = 1. . .N

subscription ofQ : Ai ∈ [qmin
i ,qmax

i], i = 1. . .N

is given as follows:

distance(P,Q)=



























0 , overlapping;

√

N

∑
i=1

(

min{pmax
i ,qmax

i }−max{pmin
i ,qmin

i }
)2

, nonoverlapping.

(8.1)

178 SUB-2-SUB: PURELY P2P PUBLISH/SUBSCRIBE CHAP. 8

Let us now take a look at the incentives behind this distance function. By
applying it in selecting neighbors, nodes concentrate on acquiring links to nodes
of gradually closer, and eventually overlapping interests. However, nopreference
is made among different nodes of overlapping interests, making all of them equally
likely to be kept or discarded from the VICINITY view during gossiping. This way,
a subscriber gets to eventually “see” all nodes with some overlapping interests.

8.6.3. Building Ring Links

The top layer in our architecture (Figure8.6) is in charge of building ring links. It
consists of the VICINITY protocol too, albeit with a small modification: it adopts
a view ofvariablelength, as opposed to fixed length in the standard version of the
protocol. This reflects the variable number of ring links nodes maintain.

It is worth noting that the top layer receives input from both lower layers,
as can be seen in Figure8.6. Indeed, when two nodes gossip in the context of
the top layer, each of them merges all its views (i.e., including the ones for the
random and overlapping-interest links) into a single container. It subsequently
applies the VICINITY selection function (described below) on this container to
select the nodes that are eligible as ring neighbors for the other node, and sends
them accordingly. Similarly, when receiving links from the other node, it merges
them with its current views from all three layers, and applies the selection function
again, this time to select ring links for itself.

An essential element for building ring links is the associated VICINITY selec-
tion function. The selection function,S(k,P,D), goes through the node descriptors
in setD, and selects the ones that qualify as ring links for nodeP. More specif-
ically, it goes through the nodes inD in increasing sequence ID order (starting
from the ID of P and cycling when reaching the maximal sequence ID) and se-
lects a node only if its subscription intersectsP’s subscription subspace at some
region not yet covered by already selected subscribers. This process is then re-
peated, but now iterating in decreasing sequence ID order. Note that theargument
k, which normally determines the number of nodes returned byS, is completely
ignored by this selection function. The pseudocode of the selection function is
shown in Figure8.8.

Another point deserving illumination is the representation of the not-yet-covered
subscription subspace ofP, and the way we subtract hyper-rectangles from it. It
is represented by means of a new type, calledhyperspace. A hyperspace is, in
turn, represented by a collection of hyper-rectangles, constituting itscomponents.
Subtracting a hyper-rectangle from a hyperspace consists in sequentially subtract-
ing it from each—interesecting—component hyper-rectangle of the hyperspace.
A hyper-rectangle intersects a hyperspace, if it intersectsanyof the hyperspace’s
component hyper-rectangles. The pseudocode for the hyperspaceclass, along with

SEC. 8.7 EVALUATION 179

function S(k,P,D) // V ICINITY selection function for ring links
var uncovered: HyperSpace
var selected: set of Node init /0
for directionin {ascending,descending}

uncovered← P.hyperRect
foreachQ∈D from P.id by direction

if Q.hyperRectintersectsuncoveredthen
uncovered.subtractHyperRect(Q.hyperRect)
selected← selected+{Q}

end if
end foreach

end for
return selected

Figure 8.8: The VICINITY selection function for building ring links, in pseu-
docode. It selects ring links for nodeP, out of the set of node descriptorsD.
Argumentk, determining the number of nodes that should be returned in the stan-
dard version of VICINITY , is not taken into account.

its method for subtracting hyper-rectangles, is presented in Figure8.9.
Let us, finally, explain how we subtract hyper-rectangles from each other. To

subtract hyper-rectangleu from v, we sweep along every dimension, one at a time,
extracting fromv chunks (smaller hyper-rectangles) that do not intersect withu in
that dimension. We stop after going through all dimensions. The outcome of
the subtraction is the collection of chunks we have extracted, which essentially
constitute a hyperspace,v− u. Subtracting another hyper-rectangle is done by
subtracting it from each component hyper-rectangle of hyperspacev− u, as de-
scribed in the previous paragraph. The process of hyper-rectanglesubtraction is
illustrated in a two-dimensional example in Figure8.10.

8.7. EVALUATION

In this section, we evaluate SUB-2-SUB by simulation under synthetic sub-
scription workloads. We focus on four key issues: overlay construction, hit ratio,
propagation speed, and complexity for publisher and subscriber joins. Spam ratio
is not considered, as it is fundamentally eliminated by our design.

We built and evaluated SUB-2-SUB on PeerSim, an open source Java simula-
tion framework for P2P protocols [PeerSim].

180 SUB-2-SUB: PURELY P2P PUBLISH/SUBSCRIBE CHAP. 8

classHyperSpace
var components: set of HyperRect

methodsubtractHyperRect(u)
foreachv ∈ components

if u intersectsv then
components← components−v
components← components+ v.subtract(u)

end if
end foreach

Figure 8.9: The HyperSpace class.

8.7.1. Experimental Setup

In lack of real-world subscription datasets, we generated synthetic onesas follows.
N-attribute subscriptions were represented asN ranges in[0. . .1], one for each
attribute. A range’s center was chosen following the respective attribute’s interest
distribution. A range’s width was determined by the attribute’swidth distribution.

In each experiment we applied the same interest distribution to allN attributes:
eitheruniformor power law. The former represents a natural unbiased workload.
The latter, known asZipf, is admitted to be a good approximation of interest popu-
larity and results in subscription sets closer to expected social behavior, exhibiting
popular and rare values. It also results in more interesting experiments, asthere
is higher overlap around the “center” of the interest space, and lower towards its
edges, resulting in rings of various lengths. The width distribution was fixed to
power lawcentered at 0, withα = 4, to account for both wide range and (nearly)
exact subscriptions.

In evaluating SUB-2-SUB we considered schemes of up to five attributes. The
number of subscribers was fixed to 10,000 for all experiments.

We tested each experiment’s effectiveness by observing the disseminationof
10,000 test events. Test events were picked at random, ensuring eachone had at
least two matching subscribers, to make dissemination meaningful.

Finally, with respect to the RINGCAST dissemination algorithm, nodes for-
warded events to theirtwo ring neighbors, and toonematching subscriber (if any)
chosen from their overlapping-interest neighbors. That is, events were dissemi-
nated with a fanout of three.

SEC. 8.7 EVALUATION 181

v

u (a) We want to subtract rectangleu (small, with
dashed outline) from rectanglev (large, shaded).

u

v1 v2 v3

(b) We first sweep along thex dimension, detaching
parts ofv not intersecting withu. Rectanglev is split
in rectanglesv1, v2, andv3. Note that the overlap
with u is isolated in a single new rectangle,v2, which
matchesu in thex dimension.

u

v1 v3
v21

v22

v23

(c) We, then, concentrate onv2, the only rectangle
that still intersectsu. We sweep along they dimen-
sion, splittingv2 in rectanglesv21, v22, andv23. The
overlap withu has now been isolated to rectangle
v22. Note that at this point we have looped through
all dimensions. Consequently, the rectangle still in-
tersectingu (v22) constitutes an exact overlap ofu.
We, therefore, remove it altogether.

v1 v3v21

v23

(d) The set of rectangles we are left with, constitute
the outcome of the subtractionv−u.

Figure 8.10: Example of rectangle removal in a two-dimensional space. First
sweeping along thex and then along they dimension. Generally, in anN-
dimensional space, we would carry on the same process for allN dimensions.

182 SUB-2-SUB: PURELY P2P PUBLISH/SUBSCRIBE CHAP. 8

Uniform distr. Power law distr.

3
at

tr
ib

ut
es

5
at

tr
ib

ut
es

0

20

40

60

80

100

1 11 21 31

cycles (5 attributes, power law distribution)

Figure 8.11: Construction of the rings in time. Light bars show the percentage
of ring links already in place. Dark bars show the percentage of rings that are
complete. 10K nodes.

8.7.2. Jump-starting SUB-2-SUB

We first test the efficiency of our algorithm in jump-starting a SUB-2-SUB overlay
from scratch. Nodes started gossiping at the same time, having been initiated
with a single random link in their CYCLON views, ensuring the overlay formed a
connected graph. We recorded the topology evolution by keeping statisticsover
the ring links associated with each of the 10,000 test events.

Figure8.11shows the evolution of ring construction per cycle, for four exper-
iments. We can see that after 40 cycles, all rings are fully set up.

Having confirmed that rings are constructed in a small number of cycles in
all cases, the remaining evaluation focuses on a single experiment, namely the
one with three attributes and power law interest distribution. This experiment is
the most interesting one for testing event dissemination and propagation speed,
as the rings it involves range from very small (2 subscribers) to quite large (246
subscribers). In five-attribute schemes, rings are trivially short (2-3subscribers)
due to the very large subscription space. The distribution of ring lengths for all
experiments is depicted in Figure8.12.

SEC. 8.7 EVALUATION 183

 1

 10

 100

 1000

 10000

 0 50 100 150 200 250

rin

gs

ring length

3 attr, uniform

3 attr, power law

5 attr, power law

5 attr, uniform

Figure 8.12: Distribution of ring lengths.

Figure 8.13: Event dissemination. Light bars show the hit ratio fornon-complete
disseminations. Dark bars show the percentage of disseminations that werecom-
plete (events delivered to all their matching subscribers). 10K nodes; 3 attributes;
power law interest distribution.

8.7.3. Event Dissemination

As mentioned earlier, events are disseminated by means of the RINGCAST dis-
semination algorithm (Section6.5.1). Nodes forward events to theirtwo ring
neighbors, and toone matching subscriber picked randomly from the view of
overlapping-interest neighbors.

Figure 8.13 presents the performance of SUB-2-SUB with respect to event
dissemination. It is worth noting that, by comparison to Figure8.11(upper-right),
complete dissemination is achieved evenbeforeall rings are in place. This comes
as a result of (also) forwarding across random overlapping-interest links.

184 SUB-2-SUB: PURELY P2P PUBLISH/SUBSCRIBE CHAP. 8

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 250

ho
ps

 to
 c

om
pl

et
e

di
ss

em
in

at
io

n

ring length

3 attr, power law

Figure 8.14: Hops to complete event dissemination, as a function of the number
of matching subscribers (ring length). 10K nodes; 3 attributes; power lawinterest
distribution.

8.7.4. Propagation Speed

We now examine the speed, in terms of the number of hops at which events spread.
We are specifically interested in the number of hops forcomplete dissemination,
that is, the number of hops elapsed from the moment a publisher delivers anevent
to some matching subscriber, until the event reaches the last one of them.

Figure8.14(b) shows the number of dissemination hops as a function of the
number of subscribers matching the respective events. Clearly, the number of
hops increases with the number of matching subscribers. However, as a result
of short-cutting the rings in disseminating events, this relation is of logarithmic
fashion.

8.7.5. Single Node Joins

Jump-starting SUB-2-SUB comprises a worst-case scenario, as the whole overlay
starts from a completely non-clustered state. We now take a look at the other end
of the spectrum, measuring the number of cycles it takes a single node to join an
already converged overlay.

Starting from the converged state of our experiments, each subscriber was
individually wiped out of the network. That is, it was removed from the network
along with all links to it. Then it was let to rejoin, and the number of cycles to
fully rejoin was recorded. Joining the network involves (a) building appropriate
ring and overlapping-interest links to other nodes, and (b) becoming known by
other nodes. A node was considered to have fully rejoined the overlay whenall its
ring links (i.e., outgoing and incoming ones) were in place. The number of cycles
it took to rejoin the overlay gives the distribution shown in Figure8.15.

SEC. 8.8 RELATED WORK AND CONCLUSIONS 185

 1

 10

 100

 1000

 0 10 20 30 40 50 60

no

de
s

cycles for SUBSCRIBER joins

 10

 100

 1000

 10000

 0 1 2 3 4 5 6 7 8

no

de
s

cycles for PUBLISHER joins

Figure 8.15: Distribution of cycles it takes subscribers and publishers to join.

For publishers, on the other hand, joining is a simpler task, as they are in-
terested only in reachinganymatching subscriber, independently of its sequence
IDs. Figure8.15also shows the distribution of cycles it takes publishers to join,
starting from a random node. It is worth noting that all 10,000 publishers we tested
joined in five or less cycles. This is important, as a publisher can safely assume
there is no subscriber matching its event(s) after a low threshold of cycles (i.e., in
the order of 10 or 20).

8.8. RELATED WORK AND CONCLUSIONS

Scalability of peer-to-peer systems makes them natural candidates to imple-
ment large-scale publish/subscribe systems. In this chapter, we presented the de-
sign and evaluation of SUB-2-SUB, a scalable, self-organizing peer-to-peer ap-
proach for content-based publish/subscribe in collaborative environments. SUB-
2-SUB deploys an unstructured overlay where subscribers are clustered in efficient
dissemination structures, based on shared interests. To the best of our knowl-
edge, SUB-2-SUB is the first attempt to build publish/subscribe overlays using
epidemic-based algorithms, thus exploiting their ability to handle dynamic envi-
ronments.

Unlike SUB-2-SUB, previous peer-to-peer approaches for content-based pub-
lish/subscribe have mainly focused on structured overlays. Among them, Megh-
doot [Gupta et al. 2004] uses an extension of the CAN DHT [Ratnasamy et al.
2001b]. It maps subscriptions to a 2× k-Euclidean space, wherek is the number
of attributes. Each attribute is represented by two dimensions, corresponding to its
minimum and maximum allowed values respectively, allowing for range subscrip-
tions. Unlike SUB-2-SUB’s autonomous and self-contained operation, Meghdoot

186 SUB-2-SUB: PURELY P2P PUBLISH/SUBSCRIBE CHAP. 8

employs a separate set of dedicated nodes for storing subscriptions and dissem-
inating events. Meghdoot deals with sparse interest distribution with CAN zone
replication, which may be computationally expensive to maintain in highly popu-
lated parts of the space. Terpstra et al. [Terpstra et al. 2003] proposed to leverage
the properties of the Chord DHT [Stoica et al. 2003] to implement an event filter-
ing system. Distributed nodes are dynamic brokers organized in a graph. They use
subscription merging and covering to provide scalability, acting similarly to tradi-
tional content-based filtering systems based on a dedicated set of brokers. How-
ever, such a set of brokers may be hard to maintain efficiently in highly dynamic
environments. Finally, Costa et al. proposed to use epidemic-based algorithms to
enhance reliability of existing publish/subscribe systems [Costa et al. 2003].

We conclude that SUB-2-SUB is an appealing alternative to existing solutions
for content-based publish/subscribe. It offers a scalable, autonomous, and self-
organizing system, combining the resilience of epidemic-based overlays with the
expressiveness of the content-based model.

CHAPTER 9

Conclusions

In this dissertation we explored gossiping protocols for self-organization, and
demonstrated their power in a number of different settings. This final chapter pre-
sents our observations from the research conducted, grouped in three categories.
First, we discuss conclusions regarding randomized overlays, second, conclusions
regarding structured overlays, and, third, conclusions from our gossip-based ap-
plications. Finally, in Section9.4we discuss future directions for our research.

9.1. RANDOMIZED OVERLAYS

We present our high-level observations first, followed by detailed conclusions
afterwards.

9.1.1. High-level Observations

In Chapters2 and3 we explored a class of gossiping protocols in which peers
gossip membership information in a more or less random way. Our main conclu-
sion from these chapters is that such protocols constitute an excellent choice for
the decentralized construction of unstructured overlay networks that share a lot of
properties with random graphs.

This class of gossiping protocols is particularly appealing to massive-scale
distributed applications. The reasons can be found in our high-level observations
from Chapters2 and3:

Decentralization Gossiping protocols are by nature fully decentralized. They
operate in a completely distributed way, by each node maintaining only a
very small, partial view of the network, and acting based on local decisions
exclusively.

188 CONCLUSIONS CHAP. 9

Self-organization and Adaptivity The gossiping protocols we explored in Chap-
ters2 and3 are self-organizing. The behavior of nodes relies entirely on
local decisions, and the communication graph (i.e., the overlay) is defined
exclusively by local knowledge of the nodes, yet the system converges as
a whole towards certain global properties. In the case of network changes,
gossiping protocols have shown to be very adaptive. It is worth noting that
in our experiments, overlays converge to the same global properties irre-
spectively of the bootstrap method used. Self-organization renders these
protocols attractive for internet-scale systems, for which explicit controlis
either infeasible or, at least, very expensive.

No need for administration As a result of their self-organizing nature, these gos-
siping protocols are also administration-free. Global properties are not im-
posed through any central—and possibly expensive—administration and
control, but come “for free” as emergent properties of gossip-basedover-
lays.

RobustnessWe observed that randomized overlays formed by our gossiping pro-
tocols demonstrate remarkable resilience to large-scale failures and high
node churn, even when each node maintains only a couple of dozen out-
going links. This property is particularly desirable for massive-scale dis-
tributed applications, as it keeps all nodes connected in a single cluster de-
spite failures and node churn, prohibiting (irrecoverable) partitioning ofthe
set of nodes. Gossiping protocols are, therefore, valuable as a fundamental
substrate taking care of membership management.

Self-healing behavior In addition to sustaining large-scale failures and high churn,
the gossiping protocols we explored also demonstrate strong self-healing
behavior. That is, after a—possibly severe—network change disturbsthe
overlay, nodes swiftly reorganize themselves and converge as of new to
global properties. In the case of continuous churn, the overlay engages in
a continuous self-healing process, maintaining its global properties close
(depending on the churn rate) to the ones in a stable network.

Scalability The gossiping protocols we explored in Chapters2 and3 are inher-
ently scalable. Irrespectively of the network size, each node maintains only
a small, fixed sized, partial view of the network, and exchanges messages
with other nodes at a fixed rate. The size of the network does not have any
effect on the memory, processing, or network load of nodes. Essentially,
gossiping protocols are infinitely scalable with respect to the load of nodes.

Local randomness We concluded that the protocols explored in Chapter3 con-
stitute a source of “random link generator”, providing each node with a

SEC. 9.1 RANDOMIZED OVERLAYS 189

stream of links to randomly chosen other nodes, in a way similar to a ran-
dom number generator providing a program with random numbers. This is
why we describe them collectively as the PEER SAMPLING SERVICE. This
feature is important to a number of applications, some of which we explored
in PartII of this dissertation.

Simplicity Last but not least, gossiping protocols are very simple in nature. This
is particularly important for systems of so large scale, where things can
easily get out of hand.

9.1.2. Detailed Observations

Apart from these high-level observations, by conducting the research presented
in Chapters2 and3 we came across a number of specific, fine-grained questions.
Delving deeper into the details, we pinpointed a number of design issues that need
to be addressed, the most important of which are laid out here:

View length Our protocols define a very small view length, consisting of only a
couple of dozen links out of possibly hundreds of thousand. Definitely,the
reason for imposing such a short view length is not to save memory, a very
cheap commodity nowadays. In fact, some applications, principally the
ones related to content searching, would benefit from a larger view length.
However, there is a tradeoff between the chosen view length and the validity
of links in dynamic environments. We observed that the larger the view
length, the higher the percentage of dead links in node views. Small views
allow nodes to cycle through their neighbors faster, removing dead links in
a more timely manner.

Peer selectionPeer selection addresses the following question: “Which of its
neighbors should a node select to initiate gossiping with?” Should it prefer a
new (head peer selection), an old (tail peer selection), or a random (random
peer selection) link from its view? Head peer selection is a bad idea: a
new link points to a recently contacted neighbor, therefore it has little new
useful information to offer. Especially selectingthenewest link is the worst
option, as it points to the last contacted neighbor, which means that a node
keeps gossiping with that same neighbor continuously. We have concluded
that peer selection should be set either to tail or random. In fact, these
two options have very comparable effects, with tail peer selection slightly
outperforming random in most cases.

Directionality of communication When nodeP initiates gossiping with nodeQ,
who should send links to the other one? It can be eitherP (push-only), Q

190 CONCLUSIONS CHAP. 9

(pull-only), or bothP andQ (push-pull). Our experimental analysis showed
that the only policy that results in adaptive overlays is push-pull, that is,
communication should be bidirectional. Using the pull-only (push-only)
policy, a node having very low indegree (outdegree) has low chances of ad-
vertising itself to other nodes, and, therefore, higher chances to get discon-
nected. Such scenarios are common. For instance, a node may find itself
having a low indegree because it just joined, or a low outdegree because
some of its neighbors died.

Garbage collection policy After exchanging views, a node typically finds itself
with more links than its view size, so it should discard some of them. Which
ones should it discard? The newest links, the oldest ones, or a randomsam-
ple? And how many? In our generic gossiping framework of Chapter3
we are modeling this with thehealing parameter H. We conclude that dis-
carding theH oldest links after each gossip exchange helps the network get
rid of invalid links (links pointing at disconnected nodes) soon. The higher
the value ofH, the faster dead links are removed, therefore, the better the
self-healing behavior of the network. However, there is a tradeoff here. The
higher the value ofH the more skewed the indegree distribution becomes,
which, in turn, is a disadvantage with respect to balanced load distribution.

Copy links or swap links? This question addresses the way nodes exchange views.
When gossiping, what should a node do with the links it sends to its gossip-
ing counterpart? Should it still keep them (copylinks), discard them (swap
links), or something in-between? Swapping links results in lower cluster-
ing, resembling random graphs. This, in turn, has three advantages. First, it
provides nodes with highly uncorrelated neighbors, leading to better local
and global randomness. Second, it increases the resilience of the network
to catastrophic failures. Third, it results in more concentrated indegree dis-
tributions, having a positive effect on load distribution. On the other hand,
copying—as opposed to swapping—links results in higher clustering, form-
ing overlays that resemble small worlds. The load is less evenly distributed
across nodes. However, there is an abundance of links after each gossip ex-
change, which permits us to increase the healing parameterH, making the
network more resilient to high churn.

Apparently there is no single best solution for all design issues. Our research
depicts the tradeoffs imposed by different policies. Depending on the priorities in
a particular network, the designer can handle the respective tradeoffsaccordingly.

SEC. 9.2 STRUCTUREDOVERLAYS 191

9.2. STRUCTURED OVERLAYS

In Chapter4 we presented the framework consisting of VICINITY and the
PEER SAMPLING SERVICE, that allows networks to self-organize into a given
target topology. The target topology is expressed by means of a selectionfunction
that determines which neighbors are optimal for every node.

The overall conclusion from this part of our research is that our topology con-
struction framework is flexible enough to build a wide variety of topologies. In
particular, the framework excels for topologies demonstrating high correlation of
nodes that share common neighbors, embodying the principle “the friend ofmy
friend is also my friend”. That is, topologies where two nodes sharing a common
neighbor have a high chance of being direct neighbors as well. For networks with
lower correlation between nodes, our framework still manages to construct the tar-
get topology, although not as efficiently, as the discovery of appropriate neighbors
relies on random encounters.

The major conclusion regarding topology construction is that it is crucial to
combine two layers. One layer, namely the VICINITY protocol, strives at locating
neighbors of close proximity in the target topology. The importance of this layer is
straightforward: it establishes the target topology links. It continuously improves
these links by probing neighbors for links to new, even “closer” neighbors, better
approximating the ideal neighbors in the target topology.

The other layer, in our case implemented by the PEER SAMPLING SERVICE,
keeps nodes connected in a randomized overlay. This is crucial for two reasons.
First, it prohibits partitioning of the set of nodes, which would occur in no time
if nodes concentrated only on their “close” neighbors. In a partitioned overlay,
nodes that happen to join in the “wrong” partition have no way to traverse the
network to discover their appropriate neighbors. Second, it provides nodes with
random links all over the network. This is vital for newly joined nodes to reach fast
their topological vicinity in an already converged overlay, rather than traversing
the network in numerous small steps. Random links serve in a way similar to
long-range links in small-world networks.

Concluding, the principal advantage of our topology construction framework
is that it is simple and generic. Its simplicity stems from its self-organizing na-
ture. Each node autonomously carried out a sequence of simple steps andoperates
based on local decisions exclusively, eliminating the need of any deployedinfras-
tructure. Its generic character is derived from its flexibility to form a wide variety
of target topologies, given the appropriate selection function. It constitutes, there-
fore, a very convenient—yet efficient—way to form arbitrary topologies, either for
prototyping or for the working version of massive-scale decentralized systems. It
is particularly suitable for systems where the exact final topology is not known be-

192 CONCLUSIONS CHAP. 9

fore deployment, as it permits fine tuning, or even radical changes of the topology
at run-time.

9.3. APPLICATIONS

The second part of this dissertation dealt with applications based on the pro-
tocols presented in the first part. The applications included routing table manage-
ment (Chapter5), information dissemination (Chapter6), semantic overlay net-
work construction (Chapter7), and a publish/subscribe system (Chapter8). All
four applications employed gossiping protocols to organize the nodes in certain
topologies in a fully decentralized and autonomous manner. With the exception of
the first application, routing table management, which constitutes our first efforts
towards gossip-based structuring, all other applications are based on the combina-
tion of VICINITY with the PEER SAMPLING SERVICE.

Chapter5 demonstrated the potential of the PEER SAMPLING SERVICE in
forming a structured overlay. As mentioned already, this was our first system to
derive structure from randomness. The main conclusion drawn from thischapter
is that randomized gossiping protocols can be harnessed to create structure, in a to-
tally decentralized, self-organizing fashion. We also observed that the robustness
and self-healing properties common in gossip protocols are retained in building a
structure. Although the research presented in this chapter is now outdatedby the
V ICINITY protocol, the conclusion it offered was valuable in continuing our work
towards that direction, that is, gossip-based topology construction.

Chapter6 employed VICINITY and the PEER SAMPLING SERVICE for infor-
mation dissemination. Gossiping protocols have been applied previously forprob-
abilistic information dissemination [Birman et al. 1999; Kermarrec et al. 2003].
Our research extends previous work by complementing probabilistic withdeter-
ministic dissemination. The chief conclusion of this chapter is that the combi-
nation of probabilistic with deterministic—together calledhybrid—dissemination
constitutes a very attractive framework for broadcasting messages efficiently and
inexpensively, in a completely decentralized way. Probabilistic dissemination
(i.e., forwarding a message at random) is achieved through random links estab-
lished by the PEER SAMPLING SERVICE, and results in fast diffusion of mes-
sages all over the network. Deterministic dissemination (i.e., forwarding a mes-
sage across well defined links) is carried out over a structured overlay formed by
V ICINITY , and ensures that every message reaches all nodes.

In Chapter7we employ gossiping to enhance distributed content-based search-
ing. We employ the topology construction framework of VICINITY and the PEER

SAMPLING SERVICE to build a semantic overlay network linking nodes of related

SEC. 9.4 FUTURE DIRECTIONS 193

interests. When node issues a query, it first asks a few of its semantically closest
peers, and if the query is not satisfied it resorts to the underlying searchmech-
anism (such as flooding, random-walks, super-peer indexing, etc.). Our simula-
tions, based on real-world traces, show that about 30% of the queries are satisfied
this way.

The idea of building a semantic overlay network to enhance content-based
queries is not new. However, all previous systems depended on heuristics to guess
which peers out of the ones that recently served a node might be usefulin serving
the same node again. As a consequence, such systems start being effective only
after a node has issued a number of queries. Also, they (implicitly) assume a static
network, and no changes in user interests, otherwise links collected in the present
are likely to be useless in the near future.

Unlike these systems, our protocol is—to the best of our knowledge—the first
system that handles node churn and dynamic user interest. It is a highly adaptive,
fast converging, yet lightweight epidemic-style solution, that builds and maintains
semantic overlay networksproactively.

Finally, Chapter8 introduces SUB-2-SUB, a fully decentralized, autonomous
solution for attribute-based publish/subscribe supporting exact and range queries.
SUB-2-SUB is based on a self-organizing overlay, that groups nodes of overlap-
ping subscriptions together, so that all nodes interested in a given eventcan dis-
seminate it among themselves in a completely autonomous way.

Our major conclusion from this chapter is that building a collaborative pub-
lish/subscribe system can benefit from the scalability and adaptivity inherent in
P2P systems. In addition, SUB-2-SUB demonstrates the power of gossiping proto-
cols in building intricate structures capturing relations between peers. Finally, we
conclude that unstructured overlays can be very promising for publish/subscribe
systems, a research area currently dominated by work on centralized, hierarchical,
and structured P2P systems.

9.4. FUTURE DIRECTIONS

This dissertation investigated gossiping protocols and showed their power in
a number of different applications. In effect, our work has opened some new
tracks in the area of gossip-based self-organization for massive scaledecentral-
ized systems. Undoubtedly, this is a large area that cannot be fully covered in a
single dissertation. There are a number of directions in which our research can be
complemented and extended.

An important next step in our research is the replacement of periodic view
exchanges with a reactive exchange mechanism. With such a protocol, nodes

194 CONCLUSIONS CHAP. 9

would locally determine and dynamically adjust their gossiping frequency based
on observed system dynamics, such as node churn, failure rates, andinformation
dissemination needs. We envisage that this replacement will lead to a better uti-
lization of network resources, and incur only minimal costs for detecting failed
nodes and keeping membership information up to date. A first step towards reac-
tive adaptation of the gossiping frequency can be found in our recent work on a
gossip-based clock synchronization protocol [Iwanicki et al. 2006].

Expanding on adaptation, it will be interesting to build an adaptive version of
the PEER SAMPLING SERVICE, that dynamically adjusts theswapping parameter
(S) and thehealing parameter(H), to optimize system behavior given the current
network conditions. Such a system would switch to a more fault tolerant mode of
operation in the face of high churn, and would gradually shift to an overlay with
more balanced degree distribution and lower clustering as the system stabilizes.

To further limit overlay maintenance costs, network proximity should be taken
into account. Network proximity estimation can be provided through a decen-
tralized network coordination system such as Skole [Szymaniak et al. 2004], or
Vivaldi [Dabek et al. 2004]. In a proximity-aware gossiping protocol, view ex-
changes among nearby peers should be favored—that is, be more frequent—than
among distant ones. This, however, would have an impact on the connectivity
and robustness properties of the emerged overlays. Determining the rightbalance
between proximity-aware gossiping and desired overlay robustness constitutes a
challenging research topic.

Overlay management is not the only service proximity-aware gossiping can
be useful to. Applications can benefit from proximity-aware overlays too, lower-
ing communication costs and enhancing application efficiency. More specifically,
input from network coordination systems, such as Skole and Vivaldi, canbe in-
corporated in the VICINITY selection function of an overlay-based application,
resulting in proximity-aware overlays. The implications of such overlays, asop-
posed to a proximity-unaware ones, in efficient broadcasting of information are
clear.

Another research direction worth following is the class of gossiping protocols
featuring variable view lengths. Our gossiping protocols (with the exceptionof the
top layer in SUB-2-SUB) impose a fixed length on node views. The underlying
motivation is to keep the number of neighbors per node low and controllable, so
that dead links are discarded promptly. An alternative is to impose a maximum
lifetime for each link and discard it after it expires. This alternative is employed
by the Kelips protocol [Gupta et al. 2003]. It is not known, however, how overlay
properties, such as the degree distribution, the percentage of dead links,clustering,
etc., are affected by node churn and failures. This family of gossiping protocols
certainly deserves further research.

SEC. 9.4 FUTURE DIRECTIONS 195

All research presented in this dissertation is experimental. Gossiping protocols
exhibit particularly chaotic behavior that is hard to model analytically. Theoretical
analysis has not been in the focus of this work. Nevertheless, it is interesting to
mathematically analyze the behavior of gossiping protocols, and formally validate
their properties. Our recent work in [Bonnet et al. 2006], analyzing a simplified
version of CYCLON without the age field, constitutes a first attempt in that direc-
tion.

With respect to information dissemination, this dissertation has focused on
push-based approaches. This is the case in both protocols dealing with informa-
tion dissemination, namely the RINGCAST protocol (Chapter6) and the SUB-
2-SUB publish/subscribe system (Chapter8). Combining push-based with pull-
based dissemination should yield a significant improvement in dissemination ef-
ficiency. However, the details of such an approach have been deferred to future
work.

Some applications may require higher reliability and performance guarantees.
Gossiping protocols, and P2P systems in general, offer best-effort solutions. An
interesting direction of research would be in designing hybrid systems, thatconsist
of a combination of centralized and P2P components. In such a setting, centralized
components will provide hard guarantees on reliability, while P2P components
will add scalability to the system. Napster was a very successful example of such a
hybrid system [Napster]. Its eventual failure was due solely to copyright violation
issues.

Security has not been discussed in this dissertation. Nevertheless, security is
a crucial aspect for any communication framework today. In the case of gossiping
protocols, security comes in two different flavors. First, security at the overlay
maintenance level. Malicious peers may deliberately try to cause damage to the
overlay, e.g., by reporting fake neighbors, discarding legitimate neighbors, achiev-
ing a very high degree by gossiping at a very fast pace, etc. Mechanisms should
be in place to shield gossip-based overlays from such malicious peers. Second,
security at the application level. Malicious peers may refuse to forward messages,
respond to other peers, and generally contribute to a P2P application. Security at
this level is application specific, and should be dealt with by the respective ap-
plications. We believe that security is the main factor still hindering the massive
deployment of peer-to-peer systems for critical applications nowadays.Its impor-
tance, therefore, is key to the commercial success of peer-to-peer protocols.

In a broader sense, our vision for the future is to exploit the PEER SAMPLING

SERVICE, CYCLON, V ICINITY , and possibly new gossiping protocols for a mul-
titude of diverse peer-to-peer applications. We envision the protocols introduced
in this dissertation as forming a basic background process, supporting, organiz-
ing, and managing overlay networks ofany scale across the Internet in a fully

196 CONCLUSIONS CHAP. 9

decentralized way.

SAMENVATTING

Epidemisch Gebaseerde
Zelforganisatie in Peer-to-Peer
Systemen

ACHTERGROND

Met rede kan gesteld worden dat we in het tijdperk van de communicatie rev-
olutie leven. Communicatie is nog nooit zo aanwezig, massaal, snel en goedkoop
geweest. Computernetwerken in het algemeen en het Internet in het bijzonder spe-
len een katalyserende rol in moderne samenlevingen. De dagen dat het Internet
slechts een onderzoeksgereedschap was, of een communicatiemiddel voor slechts
academische en militaire instellingen, liggen ver achter ons. Toegang tot het Inter-
net heeft zich verbazingwekkend snel ontwikkeld voor een steeds breder wordend
publiek.

Vroege Internet diensten werden ontwikkeld rondom twee principes: het zo-
gehetenclient/server modelen centralisatie. Het client/server model maakt een
expliciet onderscheid tussen computers (“knopen”) die een dienst leveren (de zo-
gehetenservers) en computers die diensten afnemen (declients). Centralisatie be-
helst dat een dienst op slechtséén centraal punt aangeboden wordt, veelal boven-
dien door slechtśeén computer.

De groei van het Internet heeft laten zien dat een gecentraliseerde architectuur
niet langer houdbaar is voor een groot aantal diensten zodra het aantal afnemers
(met andere woorden, clients) dramatisch toeneemt. Ten gevolge hiervan isveel
onderzoek ontstaan naar gedistribueerde systemen, waarbij de kerngedachte is om
het aanbod van een dienst te verspreiden over meerdere, samenwerkende comput-
ers. Een dergelijke verspreiding heeft potentieel veel voordelen, waaronder een
grotere tolerantie tegen falende computers, verhoogde geaggregeerde capaciteit,

198 SAMENVATTING

geografische verspreiding (met als gevolg dat een dienst dichterbij clients komt),
enz. Clients blijven echter ook bij verspreiding van de servers relatief passief: het
blijven slechts afnemers.

In de afgelopen jaren is de toegang tot het Internet sterk verbeterd, zowel
in quantitatieve als qualitatieve zin, en is ook de reken- en opslagkracht vanPCs
indrukwekkend toegenomen. Het effect is dat de traditioneel relatief zwakke client
computers nu zeer krachtige en goed verbonden apparaten zijn geworden. Een
gevolg daarvan is dat in veel gevallen hun relatief passieve rol langzaam maar
zeker veranderde naar die van actieve entititeiten in een massal gedistribueerd
systeem. In dit nieuwe paradigma, ook welpeer-to-peer computinggenoemd is
het verschil tussen aanbieders en afnemers van diensten verdwenen. In plaats
daarvan zijn knopen gelijkwaardig en werken samen om een specifieke dienst uit
te voeren.

Hetpeer-to-peer(P2P) model brengt een aantal uitdagingen met zich mee. De
belangrijkste daarvan is de potentiele schaal waarin P2P systemen dienen teop-
ereren. De schaal van deze systemen is gegroeid van groot naar massaal, waarbij
in sommige gevallen miljoenen computers verspreid over het hele Internet samen-
werken, zonder dat er sprake is van enige centralisatie. Echter, met dergelijke
groottes hebben we ook te maken met een hoge mate van instabiliteit doordat
dergelijke systemen continu aan verandering onderhevig zijn. Knopen in een
P2P systeem laten geen gegarandeerd patroon van samenwerking zien.In plaats
daarvan zien we een komen en gaan van knopen en vallen er constant knopen
en verbindingen uit. Daarbij komt dat de knopen in een groot P2P systeemerg
kunnen verschillen met betrekking tot hun hardware architectuur, samengestelde
software, en feitelijke kracht zoals uitgedrukt in o.a. de capaciteit van processor,
werkgeheugen, permanente opslag en netwerkverbinding.

Dit geheel maakt de administratie en het beheer van P2P systemen extra kri-
tish. De massale omvang in combinatie met de hoge mate van dynamiek in de
samenstelling van een P2P systeem maken expliciete en centrale besturing vrijwel
onmogelijk, of op z’n minst zeer lastig te realiseren. Gecentraliseerde oplossin-
gen zijn zeer gelimiteerd als het aankomt om snel en effectief bij te houden welke
computers deel uitmaken van een systeem. Deze schaalbaarheidsproblemenkun-
nen enisgzins verminderd worden door bijvoorbeeld hiërarchische oplossingen toe
te passen. Echter, dergelijke oplossingen zijn dikwijls complex, introduceren een
forse administratieve last en zijn afhankelijk van de beschikbaarheid van een klein
groepje cruciale computers. Deze laatste afhankelijkheid kan aangepaktworden
door het toepassen van replicatie, maar dergelijke oplossingen verhogen complex-
iteit en feitelijke beheersbaarheid van de besturing op zich. Daarbij komt dat de
omvang van de benodigde besturing sterk afhankelijk is van de omvang vanhet
systeem dat bestuurd dient te worden. Een schatting geven van die omvang is

SAMENVATTING 199

moeilijk, zoniet dikwijls onmogelijk.

De toename van het aantal apparaten dat verbonden is met het Interneten de
verdere verspreiding van netwerktechnologie laat zien dat de trend naar grote sys-
temen van samewerkende computers alleen maar zal toenemen. Ook in ons onder-
zoek anticiperen we een sterke toename van zeer omvangrijke en gedistribueerde
toepassingen. Derhalve zijn we afgestapt van deterministische en explicietesys-
teembesturing en zijn methoden gaan exploreren voor autonoom managementin
de vorm van zelfbestuur en -organisatie.

EPIDEMISCHE PROTOCOLLEN

Het doel van dit proefschrift is het verkennen van de uitdagingen in het besturen
van zeer grote gedistribueerde systemen, het introduceren van nieuweprotocollen
en het onderzoeken van hun effectiviteit in huidige en toekomstige toepassingen.
Het was hierbij niet de bedoeling om de communicatiemodellen die ten grond-
slag liggen aan het Internet te veranderen daar vele toepassingen reeds uitstekend
werken. In plaats daarvan hebben we gezocht naar alternatieve oplossingen waar
huidige benaderingen te duur zijn, niet schaalbaar zijn, teveel administratieve last
vergen, of gewoon niet toepasbaar zijn.

In het bijzonder heeft het onderzoek zich gericht op het toepassenvan zo-
gehetenepidemische protocollenvoor de ontwikkeling en onderhoud van P2P
systemen. Het basisprincipe van dergelijke protocollen is dat elke knoop regel-
matig een willekeurig andere knoop selecteert om gegevens mee uit te wisse-
len. Op deze wijze zal data zich geleidelijk over alle knopen verspreiden totdat
elke knoop dezelfde informatie heeft. Een probleem dat hierbij optreedtis dat
er een willekeurige selectie uit alle andere knopen moet plaatsvinden. Echter, een
dergelijke selectie is ronduit onmogelijk indien we te maken hebben met zeer grote
systemen, waar globaal bekendeaccurateinformatie over de huidige verzameling
van knopen schier onmogelijk is.

In ons onderzoek hebben we gekeken naar epidemische protocollen dieop
twee manieren afweken van het oorspronkelijke basisprincipe. Ten eerste hebben
we de aanname van globale kennis omtrent de verzameling van knopen laten
vallen. In onze benadering hanteert elke knoop een kleine, maar veranderende li-
jst van andere knopen, ook wel zijn buren geheten. Deze lijsten brengen met zich
mee dat een P2P systeem georganiseerd is als eennetwerk. Ten tweede behelst
de data die tussen twee knopen uitgewisseld wordt in elk geval referentiesnaar
de respectievelijke buren. Met andere woorden, knopen informeren elkaar over
hun buren. Na een uitwisseling worden de respectievelijke lijsten (gedeeltelijk)
ververst met referenties naar nieuwe buren. Door exact vast te leggen welke refer-

200 SAMENVATTING

enties uitgewisseld worden, en welke referenties in de lijst van buren opgenomen
worden, blijkt het mogelijk om op volledige gedecentraliseerde wijze detopologie
van het P2P netwerk vast te kunnen leggen.

ONZE PROTOCOLLEN

Een aantal ontwerpkriteria bepalen de eigenschappen van de resulterende P2P
netwerken. Wordt de lijst van buren min of meer willekeurig samengesteld, dan
blijkt een zogehetenrandom netwerkhet resultaat te zijn. Wordt een ordening op
de selectie van referenties gehanteerd, dan kunnen specifieke topologieën gecon-
strueerd worden. Deze keuzemogelijkheid heeft tot de volgende twee nieuwe pro-
tocollen geleid.

Cyclon In het Cyclon protocolruilen twee knopen referenties met buren. Dit
betekent dat de topologie van het P2P netwerk continu verandert. Echter,
het blijkt dat macroscopische eigenschappen convergeren. Zo hebben we
experimenteel aangetoond dat de gemiddelde afstand tussen twee knopen,
alsook de gemiddelde clusterings coëfficient convergeren naar de waarden
die men ziet bij random netwerken. Dat betekent dat op elk moment de lijst
van buren feitelijk overeenkomt met eenwillekeurigeselectie van knopen
uit het P2P netwerk.

In het bijzonder blijkt dat Cyclon niet alleen overeenkomsten heeft met ran-
dom netwerken, maar dat het bovendien uitstekend bestand is tegen snelle
veranderingen in de samenstelling van P2P systeem, of deze nou opzettelijk
tot stand zijn gekomen, of omdat er fouten zijn opgetreden. Forse veran-
deringen tasten doorgaans de toplogie van het netwerk aan, maar Cyclon
blijkt hierbij altijd zeer snel te convergeren naar een stabiele situatie. Daar-
bij komt dat elke knoop doorgaans bij evenveel andere knopen bekend is,
wat vervolgens weer leidt tot een evenwichtige balancering van het uit te
voeren werk.

Cyclon maakte onderdeel uit van een uitgebreide studie naar de effectenvan
ontwerpbeslissingen voor epidemische protocollen die uitgaan van alleen
lokale informatie. Hoewel de functionele gedragingen van de protocollen
grote overeenkomsten laten zien, blijkt dat extra-funtionele eigenschappen,
zoals balancering van werk, robuustheid, fouttolerantie en zelforganisatie
gevoelig te zijn voor de wijze waarop lijsten van buren uiteindelijk samengesteld
worden na een epidemische uitwisseling.

Vicinity In het Vicinity protocol besluit een knoop alleen die verkregen refer-
enties te behouden die aan een bepaald voorkeurskriterium voldoen. Een

SAMENVATTING 201

knoop zal op deze wijze geleidelijk buren vervangen door buren die steeds
meer zijn voorkeur hebben, om uiteindelijk met de optimale buren te eindi-
gen. Op deze wijze zal het P2P systeem zichzelf organiseren naar eenspeci-
fieke topologie die volledig bepaald wordt door de selectiefunctie voor pref-
erente buren. Het grootste voordeel van Vicinity is haar generieke karakter:
door slechts de selectiefunctie te veranderen kan op eenvoudige wijze een
andere topologie ontstaan. Ook blijkt datveranderingvan de selectiefunctie
al snel tot convergente leidt naar de nieuw beoogde organisatie.

Vicinity kan echter niet garanderen dat het P2P netwerk samenhangendbli-
jft. Derhalve wordt het altijd in combinatie met Cyclon gebruikt. Deze
combinatie heeft tevens het voordeel dat vergelegen buren uiteindelijk toch
ontdekt worden en derhalve geselecteerd kunnen worden.

Deze twee protocollen zijn gebruikt voor ontwerp en evaluatie van vier ver-
schillende applicaties: een systeem voor het onderhouden van routeringstabellen
in zogeheten DHT netwerken; een raamwerk voor efficiënte informatieverspreid-
ing; de constructie van semantische netwerken voor gedecentraliseerd zoeken; en
tenslotte een collaboratiefpublish-subscribesysteem. De toepassing van Cyclon
en Vicinity voor deze vier applicaties is telkens zeer verschillend en illustreert hun
versatiliteit.

GEVOLGTREKKINGEN

Het toepassen van Cyclon en Vicinity leverde een aantal inzichten op. Ten
eerste bleek uit onze experimenten dat de protocollen inherent schaalbaar waren.
Schaalbaarheid is het gevolg van het feit dat elke knoop een vast aantal operaties
uitvoert, op een tevoren bepaalde frequentie, en onafhankelijk van de grootte van
het P2P systeem. Ten tweede bleek dat onze protocollen zich zeer goed konden
aanpassen aan gewijzigde situaties in de samenstelling van het P2P systeem. De
combinatie van schaalbaarheid met deze flexibiliteit maakt onze epidemische pro-
tocollen uitermate geschikt voor zeer grote zelforganiserende systemen.Merk op
dat in geen geval er sprake is van welke vorm van centraal beheer dan ook. Glob-
ale eigenschappen worden dus niet centraal opgelegd, maar komen als vanzelf
tevoorschijn bij de uitvoering van een protocol.

Uit onze experimenten bleek verder dat de epidemische protocollen bijzonder
goed bestand waren tegen falende knopen en verbindingen tussen knopen. Deze
eigenschappen komen voort uit het feit dat alle knopen een gelijkwaardige rol
spelen, met als gevolg dat het effect van een falende knoop zich niet of nauwelijks
verspreidt.

202 SAMENVATTING

Bij massaal optreden van fouten zien we wel degelijk een effect op het globale
gedrag van de rest van het P2P systeem. Het bleek echter dat de prestaties, func-
tionaliteit en betrouwbaarheid op voorspelbare wijze afnamen bij het toenemen
van het aantal falende knopen. Bovendien bleek dat bij een plotseling optredende
gelijktijdige uitval van een groot aantal knopen, het overgebleven systeem zich
snel herstelde door naar een nieuwe topologie te convergeren met de gewenste
globale eigenschappen. Tot slot bleek dat snelle wisseling in de samenstelling van
participerende knopen continu gecompenseerd werd door gewenste aanpassingen
in de toplogie.

Al deze goede eigenschappen gaan gepaard met een soms verrassende een-
voud: zowel Vicinity als Cyclon zijn protocollen waarvan de details zich op feit-
elijke en op uitermate simpele wijze laten beschrijven. Eenvoud is essentieel voor
grootschalige systemen die vanuit zichzelf de natuurlijke neiging hebben complex
te zijn. De combinatie van eenvoudige principes en de opmerkelijke inherente
eigenschappen van epidemische protocollen ligt ten grondslag aan onze motivatie
voor het exploreren van hun toepassingen in grootschalige zelforganiserende sys-
temen.

BIBLIOGRAPHY

Abdelzaher, T., Shaikh, A., Jahanian, F., and Shin, K. (1996). Rtcast: lightweight multi-
cast for real-time process groups. InRTAS ’96: Proceedings of the 2nd IEEE Real-Time
Technology and Applications Symposium (RTAS ’96), page 250, Washington, DC, USA.
IEEE Computer Society.

Adar, E. and Huberman, B. A. (2000). Free riding on gnutella.First Monday, 5(10).

Albert, R. and Barab́asi, A.-L. (2002). Statistical Mechanics of Complex Networks.
Reviews of Modern Physics, 74:47–97.

Albert, R., Jeong, H., and Barabási, A.-L. (2000). Error and attack tolerance of complex
networks.Nature, 406:378–382.

Allavena, A., Demers, A., and Hopcroft, J. E. (2005). Correctness of a gossip based
membership protocol. InProceedings of the 24th annual ACM symposium on principles
of distributed computing (PODC’05), Las Vegas, Nevada, USA. ACM Press.

Babaoglu, O. (1987). On the reliability of consensus-basedfault-tolerant distributed
computing systems.ACM Trans. Comput. Syst., 5(4):394–416.

Balakrishnan, H., Kaashoek, M. F., Karger, D., Morris, R., and Stoica, I. (2003). Look-
ing up Data in P2P Systems.Commun. ACM, 46(2):43–48.

Banerjee, S., Bhattacharjee, B., and Kommareddy, C. (2002). Scalable application layer
multicast. InSIGCOMM ’02, pages 205–217, Pittsburgh, PA.

Barab́asi, A.-L. (2002).Linked: the new science of networks. Perseus, Cambridge, Mass.

Bhagwan, R., Savage, S., and Voelker, G. (2003). Understanding Availability. In 2nd
International Workshop on Peer-to-Peer Systems, Lecture Notes on Computer Science,
Berlin. Springer-Verlag.

Birman, K. P., Hayden, M., Ozkasap, O., Xiao, Z., Budiu, M., and Minsky, Y. (1999).
Bimodal multicast.ACM Trans. Comp. Syst., 17(2):41–88.

Bloom, B. H. (1970). Space/time trade-offs in hash coding with allowable errors.Com-
munications of the ACM, 13(7):422–426.

Bollobas, B. (2001).Random Graphs. Cambridge University Press, Cambridge, UK,
2nd edition.

204 BIBLIOGRAPHY

Bonnet, F., Tronel, F., and Voulgaris, S. (2006). Performance analysis of cyclon an
inexpensive membership protocol for unstructured p2p overlays. In20th International
Symposium on Distributed Computing (DISC 2006).

Broder, A. Z., Frieze, A. M., and Upfal, E. (1994). Existenceand construction of edge-
disjoint paths on expander graphs.SIAM J. Comput., 23(5):976–989.

Broder, A. Z., Frieze, A. M., and Upfal, E. (1997). Existenceand construction of edge
low congestion paths on expander graphs. In29th ACM Symposium on Theory of Com-
puting, pages 531–539.

Broder, A. Z., Frieze, A. M., and Upfal, E. (1999). Static anddynamic path selection on
expander graphs: a random walk approach.Random Struct. Algorithms, 14(1):87–109.

Castro, M., Druschel, P., Hu, Y. C., and Rowstron, A. (2003).Proximity neighbor selec-
tion in tree-based structured peer-to-peer overlays. Technical Report MSR-TR-2003-52,
Microsoft Research.

Castro, M., Druschel, P., Kermarrec, A.-M., and Rowstron, A. (2002). SCRIBE: A
Large-scale and Decentralized Publish-Subscribe Infrastructure.IEEE JSAC, 20(8).

Chun, B.-G., Wu, P., Weatherspoon, H., and Kubiatowicz, J. (2006). Chunkcast: An
anycast service for large content distribution. InProceedings of the 5th International
Workshop on Peer-to-Peer Systems (IPTPS06), Santa Barbara, CA.

Clegg, M. and Marzullo, K. (1997). A low-cost processor group membership protocol
for a hard real-time distributed system. InRTSS ’97: Proceedings of the 18th IEEE Real-
Time Systems Symposium (RTSS ’97), page 90, Washington, DC, USA. IEEE Computer
Society.

Cohen, B. (2003). Incentives build robustness in bittorrent. In First Workshop on the
Economics of Peer-to-Peer Systems, Berkeley, CA.

Costa, P., Migliavacca, M., Picco, G. P., and Cugola, G. (2003). Introducing Reliability
in Content-based Publish-Subscribe through Epidemic Algorithms. InDEBS ’03: Pro-
ceedings of the 2nd international workshop on Distributed event-based systems, pages
1–8, New York, NY, USA. ACM Press.

Cristian, F. (1990). Synchronous atomic broadcast for redundant broadcast for redundant
channels.Real-Time Systems, 2(3):195–212.

Dabek, F., Cox, R., Kaashoek, F., and Morris, R. (2004). Vivaldi: A decentralized
network coordinate system. InProceedings of the ACM SIGCOMM ’04 Conference,
Portland, Oregon.

Dabek, F., Zhao, B., Druschel, P., Kubiatowicz, J., and Stoica, I. (2003). Towards a com-
mon API for structured peer-to-peer overlays. InProceedings of the 2nd International
Workshop on Peer-to-Peer Systems (IPTPS’03), Berkeley, CA, USA.

DAS-2 (no date). http://www.cs.vu.nl/das2/.

BIBLIOGRAPHY 205

Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H., Swine-
hart, D., and Terry, D. (1987). Epidemic Algorithms for Replicated Database Mainte-
nance. InSixth Symp. on Principles of Distributed Computing, pages 1–12, New York,
NY, USA. ACM Press.

Dorogovtsev, S. N. and Mendes, J. F. F. (2002). Evolution of networks. Advances in
Physics, 51:1079–1187.

eDonkey (no date). http://www.edonkey2000.com.

El-Ansary, S., Alima, L. O., Brand, P., and Haridi, S. (2003). Efficient broadcast in
structured p2p networks. InIPTPS, pages 304–314.

Eugster, P., Handurukande, S., Guerraoui, R., Kermarrec, A.-M., and Kouznetsov, P.
(2001). Lightweight Probabilistic Broadcast. InInt’l Conf. on Dependable Systems and
Networks. IEEE Computer Society.

Eugster, P. T., Felber, P., Guerraoui, R., and Kermarrec, A.-M. (2003a). The Many Faces
of Publish/Subscribe.ACM Comput. Surv., 35(2):114–131.

Eugster, P. T., Guerraoui, R., Handurukande, S. B., Kermarrec, A.-M., and Kouznetsov,
P. (2003b). Lightweight probabilistic broadcast.ACM Trans. Comp. Syst., 21(4):341–
374.

Eugster, P. T., Guerraoui, R., Kermarrec, A.-M., and Massouli é, L. (2004). Epidemic
information dissemination in distributed systems.IEEE Computer, 37(5):60–67.

Fessant, F. L., Handurukande, S., Kermarrec, A.-M., and Massoulíe, L. (2004). Clus-
tering in peer-to-peer file sharing workloads. InThird Int’l Workshop on Peer-to-Peer
Systems, San Diego, USA.

Floyd, S., Jacobson, V., Liu, C.-G., McCanne, S., and Zhang,L. (1997). A reliable
multicast framework for light-weight sessions and application level framing.IEEE/ACM
Trans. Netw., 5(6):784–803.

Frieze, A. M. and Zhao, L. (1999). Optimal construction of edge-disjoint paths in ran-
dom regular graphs. InSODA ’99: Proceedings of the tenth annual ACM-SIAM sympo-
sium on Discrete algorithms, pages 346–355, Philadelphia, PA, USA. Society for Indus-
trial and Applied Mathematics.

Ganesh, A., Kermarrec, A.-M., and Massoulié, L. (2003). Peer-to-Peer Membership
Management for Gossip-based Protocols.IEEE Trans. Comp., 52(2):139–149.

Golding, R. A. and Taylor, K. (1992). Group membership in theepidemic style. Tech-
nical report, University of California at Santa Cruz, SantaCruz, CA, USA.

Guo, K., Hayden, M., van Renesse, R., Vogels, W., and Birman,K. P. (1997). Gsgc: An
efficient gossip-style garbage collection scheme for scalable reliable multicast. Technical
Report TR97-1656, Cornell University, Ithaca, NY, USA.

Gupta, A., Sahin, O. D., Agrawal, D., and Abbadi, A. E. (2004). Meghdoot: Content-
Based Publish/Subscribe over P2P Networks. InMiddleware, pages 254–273.

206 BIBLIOGRAPHY

Gupta, I., Birman, K., Linga, P., Demers, A., and van Renesse, R. (2003). Kelips:
Building an efficient and stable P2P DHT through increased memory and background
overhead. InProceedings of the 2nd International Workshop on Peer-to-Peer Systems
(IPTPS ’03).

Gupta, I., Birman, K. P., and van Renesse, R. (2002). Fighting fire with fire: using
randomized gossip to combat stochastic scalability limits. Quality and Reliability Engi-
neering International, 18(3):165–184.

Gupta, I., Kermarrec, A.-M., and Ganesh, A. J. (2006). Efficient and adaptive epidemic-
style protocols for reliable and scalable multicast.IEEE Transactions on Parallel and
Distributed Systems, 17(7):593–605.

Gupta, I., van Renesse, R., and Birman, K. P. (2001). Scalable fault-tolerant aggregation
in large process groups. InDSN ’01: Proceedings of the 2001 International Conference
on Dependable Systems and Networks (formerly: FTCS), pages 433–442, Washington,
DC, USA. IEEE Computer Society.

Hadzilacos, V. and Toueg, S. (1993).Fault-tolerant broadcasts and related problems.
ACM Press/Addison-Wesley Publishing Co., New York, NY, USA.

Handurukande, S., Kermarrec, A.-M., Fessant, F. L., and Massoulíe, L. (2004). Exploit-
ing semantic clustering in the edonkey p2p network. In11th ACM SIGOPS European
Workshop (SIGOPS), Leuven, Belgium.

Harary, F. (1962). The maximum connectivity of a graph. InProceedings of the National
Academy of Sciences, volume 48, pages 1142–1146.

Hendrick, C. (1988). Routing information protocol. RFC 1058, IETF.

Iwanicki, K., van Steen, M., and Voulgaris, S. (2006). Gossip-based clock synchroniza-
tion for large decentralized systems. InProceedings of the Second IEEE International
Workshop on Self-Managed Networks, Systems & Services (SelfMan 2006), pages 28–
42, Dublin, Ireland.

Jelasity, M. and Babaoglu, O. (2004). T-Man: Fast gossip-based construction of large-
scale overlay topologies. Technical Report UBLCS-2004-7,University of Bologna, De-
partment of Computer Science, Bologna, Italy.

Jelasity, M. and Babaoglu, O. (2005). T-Man: Gossip-based Overlay Topology Man-
agement. InProceedings of Engineering Self-Organising Applications(ESOA’05).

Jelasity, M. and Babaoglu, O. (2006). T-Man: Gossip-based overlay topology man-
agement. In Brueckner, S. A., Di Marzo Serugendo, G., Hales,D., and Zambonelli,
F., editors,Engineering Self-Organising Systems: Third International Workshop (ESOA
2005), Revised Selected Papers, volume 3910 ofLecture Notes in Computer Science,
pages 1–15. Springer-Verlag.

Jelasity, M., Guerraoui, R., Kermarrec, A.-M., and van Steen, M. (2004a). The Peer
Sampling Service: Experimental Evaluation of Unstructured Gossip-Based Implementa-
tions. InFifth ACM/IFIP/USENIX International Middleware Conference, pages 79–98,
New York, NY, USA. Springer-Verlag New York, Inc.

BIBLIOGRAPHY 207

Jelasity, M., Kowalczyk, W., and van Steen, M. (2003). Newscast Computing. Technical
Report IR-CS-006, Vrije Universiteit Amsterdam, Department of Computer Science,
Amsterdam, The Netherlands.

Jelasity, M., Kowalczyk, W., and van Steen, M. (2004b). An approach to massively dis-
tributed aggregate computing on peer-to-peer networks. InProceedings of the 12th Eu-
romicro Conference on Parallel, Distributed and Network-Based Processing (PDP’04),
pages 200–207, A Coruna, Spain. IEEE Computer Society.

Jelasity, M. and Montresor, A. (2004). Epidemic-Style Proactive Aggregation in Large
Overlay Networks. In24th Int’l Conf. on Distributed Computing Systems, pages 102–
109.

Jelasity, M., Montresor, A., and Babaoglu, O. (2004c). A modular paradigm for building
self-organizing peer-to-peer applications. In Di Marzo Serugendo, G., Karageorgos, A.,
Rana, O. F., and Zambonelli, F., editors,Engineering Self-Organising Systems, volume
2977 ofLecture Notes in Artificial Intelligence, pages 265–282. Springer. invited paper.

Jelasity, M., Montresor, A., and Babaoglu, O. (2005). Gossip-based aggregation in large
dynamic networks.ACM Trans. Comp. Syst., 23(3):219–252.

Jelasity, M., Montresor, A., and Babaoglu, O. (2006). The bootstrapping service. InPro-
ceedings of International ICDCS Workshop on Dynamic Distributed Systems (ICDCS-
IWDDS’06), Lisboa, Portugal. IEEE Computer Society. To appear.

Jenkins, K. and Demers, A. (2001). Logarithmic harary graphs. icdcsw, 00:0043.

J.Pouwelse, P.Garbacki, J.Wang, A.Bakker, J.Yang, A.Iosup, D.Epema, M.Reinders, van
Steen, M., and H.Sips (2006). Chitraka: A social-based peer-to-peer system. InProc. of
the 5th International Workshop on Peer-to-Peer Systems (IPTPS’06).

Karp, R. M., Schindelhauer, C., Shenker, S., and Vöcking, B. (2000). Randomized
Rumor Spreading. In14th Symposium on the Foundations of Computer Science, pages
565–574, Los Alamitos, CA. IEEE, IEEE Computer Society Press.

Keidar, I., Sussman, J., Marzullo, K., and Dolev, D. (2002).Moshe: A group member-
ship service for wans.ACM Trans. Comput. Syst., 20(3):191–238.

Kempe, D., Dobra, A., and Gehrke, J. (2003). Gossip-based computation of aggregate
information. InProceedings of the 44th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2003), pages 482–491. IEEE Computer Society.

Kempe, D., Kleinberg, J., and Demers, A. (2001). Spatial gossip and resource location
protocols. InSTOC ’01: Proceedings of the thirty-third annual ACM symposium on
Theory of computing, pages 163–172, New York, NY, USA. ACM Press.

Kermarrec, A.-M., Massoulié, L., and Ganesh, A. J. (2003). Probabilistic Reliable Dis-
semination in Large-Scale Systems.IEEE Trans. Par. Distr. Syst., 14(2):248–258.

King, V. and Saia, J. (2004). Choosing a random peer. InProceedings of the 23rd
annual ACM symposium on principles of distributed computing (PODC’04), pages 125–
130. ACM Press.

208 BIBLIOGRAPHY

Kleinberg, J. (2000a). The Small-World Phenomenon: An Algorithmic Perspective. In
Proceedings of the 32nd ACM Symposium on Theory of Computing.

Kleinberg, J. (2004). The small-world phenomenon and decentralized search.Math
Awareness Month 2004, 37(3).

Kleinberg, J. and Rubinfeld, R. (1996). Short paths in expander graphs. InFOCS
’96: Proceedings of the 37th Annual Symposium on Foundations of Computer Science,
page 86, Washington, DC, USA. IEEE Computer Society.

Kleinberg, J. and Tardos, E. (1995). Disjoint paths in densely embedded graphs. In
FOCS ’95: Proceedings of the 36th Annual Symposium on Foundations of Computer
Science (FOCS’95), page 52, Washington, DC, USA. IEEE Computer Society.

Kleinberg, J. M. (2000b). Navigation in a small world.Nature, 406(6798).

Kleinberg, J. M. (2001). Small-world phenomena and the dynamics of information. In
NIPS, pages 431–438.

Kostić, D., Rodriguez, A., Albrecht, J., Bhirud, A., and Vahdat, A. (2003). Using random
subsets to build scalable network services. InProceedings of the USENIX Symposium
on Internet Technologies and Systems (USITS 2003).

Kowalczyk, W. and Vlassis, N. (2004). Newscast EM. InAdvances in Neural Informa-
tion Processing Systems (NIPS) 17, Cambridge, MA. MIT Press.

Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Dennis Geels, R. G.,
Rhea, S., Weatherspoon, H., Weimer, W., Wells, C., and Zhao,B. (2000). OceanStore:
An Extremely Wide-Area Storage System. InNineth Int’l Conf. Architectural Support
for Programming Languages and Operating Systems, pages 190–201, Cambridge, MA.
ACM.

Law, C. and Sui, K.-Y. (2003). Distributed Construction of Random Expander Networks.
In 22nd INFOCOM Conf., Los Alamitos, CA. IEEE, IEEE Computer Society Press.

Li, M. and Vitányi, P. (1997).An Introduction to Kolmogorov Complexity and its Appli-
cations. Springer Verlag, 2nd edition.

Lin, J. C.-H. and Paul, S. (1996). Rmtp: A reliable multicasttransport protocol. In
INFOCOM, pages 1414–1424.

Lin, M.-J. and Marzullo, K. (1999). Directional Gossip: Gossip in a Wide Area Network.
In European Dependable Computing Conference, pages 364–379.

Lin, M.-J., Marzullo, K., and Masini, S. (2000). Gossip versus Deterministic Flooding:
Low Message Overhead and High Reliability for Broadcastingon Small Networks. In
14th Int’l Symp. Distributed Computing (DISC), pages 253–267. University of California
at San Diego.

Linga, P., Gupta, I., and Birman, K. (2004). Kache: Peer-to-peer web caching using
kelips.

BIBLIOGRAPHY 209

Loguinov, D., Kumar, A., Rai, V., and Ganesh, S. (2003). Graph-theoretic analysis of
structured peer-to-peer systems: Routing distances and fault resilience. InProceedings
of ACM SIGCOMM 2003, pages 395–406. ACM Press.

Marsaglia, G. (1995). The Marsaglia Random Number CDROM includ-
ing the Diehard Battery of Tests of Randomness. Florida State University.
http://www.stat.fsu.edu/pub/diehard.

Marsaglia, G. and Tsang, W. W. (2002). Some difficult-to-pass tests of randomness.
Journal of Statistical Software, 7(3):1–8.

Massoulie, L., Kermarrec, A.-M., and Ganesh, A. J. (2003). Network awareness and
failure resilience in self-organising overlay networks. In Symp. on Reliable Distributed
Systems, page 47, Los Alamitos, CA, USA. IEEE Computer Society.

Montresor, A., Jelasity, M., and Babaoglu, O. (2004). Robust Aggregation Protocols
for Large-scale Overlay Networks. InInt’l Conf. on Dependable Systems and Networks,
pages 19–28. IEEE Computer Society.

Montresor, A., Jelasity, M., and Babaoglu, O. (2005). Chordon demand. InPeer-to-Peer
Computing, pages 87–94.

Moy, J. (1994). OSPF version 2. RFC 1583, IETF.

Napster (no date). http://www.napster.com.

Newman, M. (2002). Random Graphs as Models of Networks. In Bornholdt, S. and
Schuster, H. G., editors,Handbook of Graphs and Networks: From the Genome to the
Internet, chapter 2. John Wiley, New York.

Padmanabhan, V. N. and Sripanidkulchai, K. (2002). The casefor cooperative net-
working. In Peer-to-Peer Systems: First International Workshop, IPTPS 2002, pages
178–190, Cambridge, MA, USA.

Pandurangan, G., Raghavan, P., and Upfal, E. (2003). Building low-diameter peer-to-
peer networks.IEEE Journal on Selected Areas in Communications (JSAC), 21(6):995–
1002.

Pastor-Satorras, R. and Vespignani, A. (2001). Epidemic dynamics and endemic states
in complex networks.Physical Review E, 63:066117.

PeerSim (no date). http://peersim.sourceforge.net.

Peleg, D. and Upfal, E. (1987). Constructing disjoint pathson expander graphs. InSTOC
’87: Proceedings of the nineteenth annual ACM conference onTheory of computing,
pages 264–273, New York, NY, USA. ACM Press.

Peleg, D. and Upfal, E. (1989). Constructing disjoint pathson expander graphs.Combi-
natorica, 9:289–313.

Piantoni, R. and Stancescu, C. (1997). Implementing the swiss exchange trading sys-
tem. InFTCS ’97: Proceedings of the 27th International Symposium on Fault-Tolerant
Computing (FTCS ’97), page 309, Washington, DC, USA. IEEE Computer Society.

210 BIBLIOGRAPHY

Pittel, B. (1987). On spreading a rumor.SIAM Journal on Applied Mathematics,
47(1):213–223.

Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Schenker, S. (2001a). A Scalable
Content-Addressable Network. InSIGCOMM, pages 161–172, San Diego, CA. ACM.

Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Shenker, S. (2001b). A Scalable
Content-Addressable Network. InSIGCOMM, pages 161–172, San Diego, CA.

Renesse, R. V., Birman, K. P., and Vogels, W. (2003). Astrolabe: A robust and scalable
technology for distributed system monitoring, management, and data mining. ACM
Transactions on Computer Systems, 21(2):164–206.

Risson, J. and Moors, T. (2006). Survey of research towards robust peer-to-peer net-
works: Search methods.Computer Networks. To appear.

Rowstron, A. and Druschel, P. (2001a). Pastry: Scalable, decentralized object location
and routing for large-scale peer-to-peer systems. InIFIP/ACM Middleware 2001, Hei-
delberg, Germany.

Rowstron, A. and Druschel, P. (2001b). Storage Management and Caching in PAST, a
Large-Scale, Persistent Peer-to-Peer Storage Utility. In18th Symp. Operating System
Principles, Banff, Canada. ACM.

Saroiu, S., Gummadi, P. K., and Gribble, S. D. (2002). A Measurement Study of Peer-
to-Peer File Sharing Systems. InProceedings of Multimedia Computing and Networking
2002 (MMCN ’02), San Jose, CA, USA.

Saroiu, S., Gummadi, P. K., and Gribble, S. D. (2003). Measuring and Analyzing the
Characteristics of Napster and Gnutella Hosts.Multimedia Systems Journal, 9(2):170–
184.

Sen, S. and Wang, J. (2004). Analyzing Peer-to-Peer Traffic Across Large Networks.
IEEE/ACM Transactions on Networking, 12(2):219–232.

Sherwood, R., Braud, R., and Bhattacharjee, B. (2004). Slurpie: A cooperative bulk data
transfer protocol. InINFOCOM.

Sripanidkulchai, K., Maggs, B., and Zhang, H. (2003). Efficient content location using
interest-based locality in peer-to-peer systems. InINFOCOM Conference.

Stavrou, A., Rubenstein, D., and Sahu, S. (2004). A Lightweight, Robust P2P System to
Handle Flash Crowds.IEEE Journal on Selected Areas in Communications, 22(1):6–17.

Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan, H. (2001). Chord:
A Scalable Peer-to-peer Lookup Service for Internet Applications. InSIGCOMM, pages
149–160, San Diego, CA. ACM.

Stoica, I., Morris, R., Liben-Nowell, D., Karger, D. R., Kaashoek, M. F., Dabek, F., and
Balakrishnan, H. (2003). Chord: A Scalable Peer-to-peer Lookup Protocol for Internet
Applications.ACM/IEEE Trans. Netw., 11(1):17–32.

BIBLIOGRAPHY 211

Sun, Q. and Sturman, D. (2000). A Gossip-Based Reliable Multicast for Large-Scale
High-Throughput Applications. InInternational Conference on Dependable Systems
and Networks, pages 347–358, Los Alamitos, CA. IEEE, IEEE Computer Society Press.

Szymaniak, M., Pierre, G., and van Steen, M. (2004). Scalable Cooperative Latency
Estimation. InTenth Int’l Conf. Parallel and Distributed Systems, Los Alamitos, CA.
IEEE, IEEE Computer Society Press.

Terpstra, W. W., Behnel, S., Fiege, L., Zeidler, A., and Buchmann, A. P. (2003). A Peer-
to-Peer Approach to Content-Based Publish/Subscribe. InDEBS, pages 1–8, San Diego,
CA.

van Renesse, R., Minsky, Y., and Hayden, M. (1998). A gossip-based failure detec-
tion service. InProc. of Middleware, the IFIP International Conference on Distributed
Systems Platforms and Open Distributed Processing, pages 55–70, The Lake District,
England. IFIP.

Venkataraman, V., Francisy, P., and Calandrino, J. (2006).Chunkyspread: Multi-tree
unstructured peer-to-peer. InProceedings of the 5th International Workshop on Peer-to-
Peer Systems (IPTPS06), Santa Barbara, CA.

Voulgaris, S., Gavidia, D., and van Steen, M. (2005). Cyclon: Inexpensive membership
management for unstructured p2p overlays.Journal of Network and Systems Manage-
ment, 13(2):197–217.

Voulgaris, S., Jelasity, M., and van Steen, M. (2003). A Robust and Scalable Peer-to-
Peer Gossiping Protocol. In2nd International Workshop on Agents and Peer-to-Peer
Computing (AP2PC 2003), Melbourne, Australia.

Voulgaris, S., Kermarrec, A.-M., Massoulié, L., and van Steen, M. (2001). Exploiting
semantic proximity in peer-to-peer content searching. In10th International Workshop
on Future Trends in Distributed Computing Systems (FTDCS 2004), Suzhu, China.

Voulgaris, S., Rivìere, E., Kermarrec, A.-M., and van Steen, M. (2006). Sub-2-sub:
Self-organizing content-based publish subscribe for dynamic large scale collaborative
networks. InProceedings of the 5th International Workshop on Peer-to-Peer Systems
(IPTPS06).

Voulgaris, S. and van Steen, M. (2003). An Epidemic Protocolfor Managing Routing
Tables in very large Peer-to-Peer Networks. In14th IFIP/IEEEWorkshop on Distributed
Systems: Operations and Management (DSOM 2003), volume 2867 ofLecture Notes on
Computer Science, pages 41–54, Berlin. IFIP/IEEE, Springer-Verlag.

Voulgaris, S. and van Steen, M. (2005). Epidemic-style Management of Semantic Over-
lays for Content-Based Searching. InEuroPar, LNCS 3648, pages 1143–1152. Springer-
Verlag.

Watts, D. J. (1999).Small Worlds, The Dynamics of Networks between Order and Ran-
domness. Princeton University Press, Princeton, NJ.

Watts, D. J. and Strogatz, S. H. (1998). Collective dynamicsof ’small-world’ networks.
Nature, 393:440–442.

212 BIBLIOGRAPHY

Wouhaybi, R. and Campbell, A. T. (2004). Supporting Resilient Low-Diameter Peer-to-
Peer Topologies. In23rd INFOCOM Conf., Los Alamitos, CA. IEEE, IEEE Computer
Society Press.

Zhao, B. Y., Huang, L., Stribling, J., Rhea, S. C., Joseph, A.D., and Kubiatowicz, J. D.
(2004). Tapestry: A resilient global-scale overlay for service deployment.IEEE Journal
on Selected Areas in Communications, 22(1):41–53.

Zhao, B. Y., Kubiatowicz, J., and Joseph, A. D. (2001). Tapestry: An Infrastructure
for Fault-tolerant Wide-area Location and Routing. Technical Report CSD-01-1141,
Computer Science Division, University of California, Berkeley.

Zhong, M., Shen, K., and Seiferas, J. (2005). Non-uniform random membership man-
agement in peer-to-peer networks. InProc. of the IEEE INFOCOM, Miami, FL.

Zhuang, S. Q., Zhao, B. Y., Joseph, A. D., Katz, R. H., and Kubiatowicz, J. D. (2001).
Bayeux: an architecture for scalable and fault-tolerant wide-area data dissemination. In
NOSSDAV ’01: Proceedings of the 11th international workshop on Network and oper-
ating systems support for digital audio and video, pages 11–20, New York, NY, USA.
ACM Press.

	ACKNOWLEDGEMENTS
	I PROTOCOLS
	Introduction
	Desired Solution
	Why not DHTs?
	The Gossiping Model of Communication
	Traditional Gossiping
	Gossip-based Topology Construction

	Why Gossiping?
	Research Methodology
	Outline and Contributions

	Building Random Overlays: Cyclon
	The Protocol
	Basic Swapping
	Enhanced Swapping

	Basic Properties
	Connectivity
	Convergence
	Degree Distribution
	Dependency on Gossip Length

	Adding Nodes
	Removing Nodes
	Robustness - Self Healing Behavior
	Bandwidth Considerations
	Applications
	The Newscast Protocol
	Principal Operation
	Properties of Newscast

	An Application: Aggregation
	Related Work
	Conclusions and Future Work

	Random Overlays: Exploring the Design Space
	Introduction
	The Peer Sampling Service
	API
	Generic Protocol Description
	Design Space
	Implementation

	Local Randomness
	Experimental Settings
	Test Results
	Conclusions

	Global Randomness
	Properties of Degree Distribution
	Clustering and Path Lengths

	Fault Tolerance
	Catastrophic Failure
	Churn
	Trace-driven Churn Simulations

	Wide-Area-Network Emulation
	Discussion
	Randomness

	Related Work
	Membership Management Protocols
	Complex Networks
	Unstructured Overlays
	Structured Overlays

	Concluding Remarks

	From Randomness to Structure: Vicinity
	Design Preamble
	The Topology Construction Framework
	Model Outline
	The Selection Function
	Design Rationale

	The Vicinity Protocol
	Discussion on the Design Choices
	Outline of Evaluation
	Selection of Test Cases
	Generic Experimental Settings

	Test Case A: Forming a 2-D Spatial Grid
	Demonstration of Test Case A
	Analysis of Test Case A

	Test Case B: Clustering Nodes in Groups
	Demonstration of Test Case B
	Analysis of Test Case B

	Discussion and Related Work

	II APPLICATIONS
	Routing Table Management: Building Pastry
	Pastry-like P2P Routing
	Basic Concept
	Internal Structure of the Routing Tables
	Routing

	Building Routing Tables
	The Principal Idea
	Multilayer Architecture

	Experimental Setting
	Experimental Results and Analysis
	Bootstrapping
	Robustness to Large-Scale Failures
	Bandwidth Considerations

	Conclusions and Related Work

	Information Dissemination
	Background and Related Work
	Evaluating a Dissemination System
	Deterministic Dissemination
	Probabilistic Dissemination
	The RandCast Dissemination Algorithm

	Hybrid Dissemination
	The RingCast Dissemination Algorithm

	Evaluation
	Evaluation in a Static Failure-free Environment
	Evaluation after Catastrophic Failure
	Evaluation under Churn

	Discussion and Future Work

	Semantic Overlay Networks
	Overview
	Model Outline
	Gossiping Framework
	Experimental Environment and Settings
	Performance Evaluation
	Convergence Speed on Cold Start
	Adaptivity to Changes of User Interests
	Effect on Semantic Hit Ratio
	Single Node Joins
	Behavior under Node Churn

	Bandwidth Considerations
	Discussion and Related Work

	Sub-2-Sub: Purely P2P Publish/Subscribe
	Overview
	Issues in Publish / Subscribe Systems
	System Model
	Sub-2-Sub in a Nutshell
	The Sub-2-Sub Dissemination Overlay
	Spreading Events

	Building the Dissemination Overlay
	Building Random Links
	Building Overlapping-Interest Links
	Building Ring Links

	Evaluation
	Experimental Setup
	Jump-starting Sub-2-Sub
	Event Dissemination
	Propagation Speed
	Single Node Joins

	Related Work and Conclusions

	Conclusions
	Randomized Overlays
	High-level Observations
	Detailed Observations

	Structured Overlays
	Applications
	Future Directions

	SAMENVATTING
	BIBLIOGRAPHY

