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CHAPTER1

Introduction

We are arguably living in the communications revolution era. Communications
have never been as ubiquitous, massive, fast, and inexpensiveyas¢heday.
Networks in general and the Internet in particular play a catalytic role itecon
porary societies. The days when the Internet was a mere researcbrtaaom-
munication channel exclusively for academic and military institutions are lohg lef
behind. Access to the Internet has spread at an astonishing sppedliagto an
increasingly broader public, emerging the Net from an academic elite tool to a
global cult that shapes the way of living on the planet.

The Internet offers a wealth of functionalities by means of depl®grdices
TheWorld Wide Wepand theElectronic Mail (e-mail are without doubt the two
principal services that helped the Internet break its strictly academieisrand
which remain among the most popular services nowadays. Other “traditional”
services includeTelnet the File Transfer Protocol(ftp), newsgroupsIRC and
several others. More recently, a number of more complex servicesapaeared,
including e-commerce, online auctions, file sharing systems, streamingeservic
etc. This tremendous growth of the Internet has naturally caused artiexadd
the models of communication, that we will discuss below.

Early Internet services were designed and built around two princgzabigms,
namely the client-server model and centralization. €hent-server modelm-
poses a clear distinction between nodes that provide a sepgoet$ and those
that make use of itglientg. Clients are passive entities accessing the service pro-
vided by dedicated nodes, the servéentralization in its turn, refers to the fact
that a service is offered by a single dedicated computer.

The dramatic expansion of the Internet proved the traditional centralized a
chitecture inadequate for a number of services in the large scale. Asllg res
considerable effort has been made in the aredistifibuted systemsThe idea
was to abolish centralization by distributing a service across multiple coopgeratin
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servers. Such a distribution can offer a multitude of benefits, includingttaatt
ance, increased aggregate capacity, geographic distribution, eteveligwlients
remain passive entities, using the service collectively offered by therserv

In the more recent years, advances in network speed and sueckssds
in computing power and storage capacity, in combination with the vast number
of networked low-end computers, resulted in considerable amounts afrceso
accumulating in the end-nodes. This has naturally created incentives&skdhne
power of such a huge pool of resources. Consequently, endsnaste promoted
from passive entities to active components in massively distributed enviratame
This goes well beyond the—once exclusive—paradigm of end-nodssively
using services, described above. In this new model, known agabeto-peer
(abbreviated”2P) model, nodes do not only passivetpnsumeresources, but
they alsoparticipate interact andcontributeto the services they make use of.
Instead of nodes being divided in servers and clients, in P2P systeras aoal
equal peers collaborating to collectively carry out a service.

The P2P model of communication poses a humber of challenging issues. Most
important is the unprecedented scale of P2P systems. The size of dinethtra
systems has grown from large to massive, in certain cases involving millions of
nodes spread all around the globe. And with massive scale comes niastive
bility, due to the highly dynamic nature of systems of that size. Typically, nodes
in P2P systems provide no guarantees regarding their participation patterns.
stead, they join and leave at any time at will, let alone unpredictable ungtacef
failures of nodes and links. Finally, nodes in P2P systems are generedhpge-
neous with respect to their hardware architectures and software piatfas well
as regarding their computational, memory, storage, and network resource

The aforementioned issues place a critical burden on the administration and
management of such systems. Massive scale in combination with highly dynamic
environments render explicit control of such systems infeasible, or sit Veay
hard to implement. Centralized systems impose severe limitations in keeping track
of millions of nodes coming and going. Scale issues can be alleviated by means
of a more sophisticated architecture, such as a hierarchical structoeever,
this increases complexity and administration costs, and the system depehds on
availability of certain key nodes. Solutions introducing redundancy by mefn
replication exist, however they inflict additional complexity which is nontrigial
such scale. On top of that, all these solutions (i.e., both centralized andchiera
cal ones) require an educated guess of the expected system sizeritoaagdpro-
priately allocate adequate resources. Generally, trying to impose explntibto
on this class of systems and tracking them by traditional deterministic methods
becomes increasingly complex.

The increasing number of connected devices, and the proliferationtof ne
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works, provide no indication of a slowdown in this tendency. Quite on the con
trary, we anticipate new, unimaginable, large-scale distributed applicatienssime.

In our research we step away from the deterministic and explicit controéssive-
scale systems. In contrast, we explore methods that enable the autononmus ma
agement of such systems by means of self-organization.

The goal of this dissertation is to address such challenges in scale and admin
istration, introduce new protocols, and explore their usage in a numberreint
or future applications. It should be noted that our goal is not to chargéth
ternet communication model as a whole, as a significant number of applications
work well the way they are. We aim at providing alternative solutions to com-
munication models where traditional approaches are either too expetsinef
scale well, require excessive administration, or simply are not applicable fo

1.1. DESIRED SOLUTION

The main question we are faced withhisw decentralized systems should be
First, they should be self-configurable. That is, configuration and dsliration
of such systems should be simple. It should be done by means of higletewel
mands, such as join this cluster or that application. They should be plugtand
in a decentralized sense.

Ideally, large-scale decentralized systems should be self-organiaed sfiould
adapt fast and reliably to changes. In fact, they should be flexiblegéntu
withstand continuous changes, in very dynamic environments. In thenoeesé
large-scale failures (such as network partitioning) they should be t,cdnc they
should demonstrate self-healing behavior.

Considering their anticipated size, decentralized systems should be highly
scalable. Even more, they should demonsteléstic capacity. By elastic we
mean that the capacity of a system should be proportional to its size. Thjs way
the larger a system gets (and therefore the higher the demand), the pacéyca
has to serve that demand. On the other hand, when the system shrintapaoe
ity decreases accordingly. Such networks can spontaneously adapxpected
increase or decrease in demand.

Last, but not least, large-scale decentralized systems should be simple. In
systems scaling to million of nodes, things can easily get out of control.
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1.2. WHY NOT DHTS?

A significant direction of recent research in P2P systems has beerigmites
structured overlay networks for routing. Such systems are widely krasAis-
tributed Hash Table$DHTs). A number of DHT systems have been proposed to
date, most important representatives being PaRowfstron and Druschel 200[1a
Tapestry Zhao et al. 20012004, Chord [Stoica et al. 2001 and CAN [Rat-
nasamy et al. 2001aTheir common property is that they all form a structured
overlay connecting a large number of participating nodes, which is usedite r
packets among them.

DHT systems assign each participating node an ID, and route messages to a
node based on that, rather than based on its IP address. Perforimaecen$ of
routing hops) is typically inferior compared to traditional IP routing, but thisis n
the point. Their significance lies in the fact that they map ID keys to nodes, in a
way similar to traditional hash tables mapping numeric keys to table entries. This
function is crucial as a building block for numerous other applications, asiclis-
tributed network storage (OceanStokaipiatowicz et al. 200pand PAST Row-
stron and Druschel 200]b distributed web caching, etc. These and other DHT
applications are based on the following observation. Any indexable setattan
be appropriately mapped to the nodes of a DHT overlay and spreacianglgr
The data entry having a given ID is placed on the node with the closest Ito th
Subsequently, given the ID of a data entry, the node hosting it can ieleaated
through DHT-based ID routing.

Although DHTSs have reached a substantial level of maturity, they do not fo
a panacea for the P2P world. DHTs are excellent for ID-based rquimy con-
sequently, for exact query matching. They generally excel as a B&fewvork for
ID-centric operations. However, not all applications are ID-centrar.ifstance,
despite being just right for ID-based queries, DHTs are not apjatepgueries
based on arbitrary predicates. Neither are they appropriate for buildiegnantic
overlay, that is, linking nodes that are semantically related.

In essence, DHTSs formtructuredP2P topologies, where links are determined
by the IDs of participating nodes. Data is allocated to nodes according to their
IDs. Subsequently, this structure is exploited to efficiently perform 1Bedaop-
erations. In contrast, the protocols we explore in this dissertation fmstruc-
tured P2P topologies, in which links are placed: (a) uniformly at random, or (b)
based on data laying on nodes. The main difference between DHTs atygphéhe
of overlays we build in this dissertation can be synopsized in the followingsehr

DHTSs place data after the topology. Our protocols build the topology after data.
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1.3. THE GOSSIPING MODEL OF COMMUNICATION

In this dissertation we explogossiping protocol$or building and managing
P2P overlays. Gossiping is a major representative of fully decentralsztd,
organizing systems. Let us take a look at what gossiping protocolsratdcav
we use them for overlay construction.

1.3.1. Traditional Gossiping

Gossiping—also known apidemie—protocols, were first introduced by Demers
et al. Demers et al. 1987n 1987. Demers et al. employed them in propagat-
ing updates in loosely replicated databases to maintain mutual consistency among
the replicas. Ever since they have been used for information disseminBtren [
man et al. 1999Kermarrec et al. 2003Eugster et al. 2004 for disseminating
group membership to the whole groupdlding and Taylor 1992 for failure de-
tection fvan Renesse et al. 1998r garbage collectionGuo et al. 199F, for ag-
gregation Kempe et al. 2003Jelasity et al. 20042005 Montresor et al. 2004

for bootstrapping networks/pulgaris and van Steen 2003elasity et al. 2006
and for load balancinglglasity et al. 2004cGenerally, gossiping protocols have
been associated mostly with dissemination of information.

Omitting specific details, gossiping protocols operate based on the following
simple basic model. Each node has a complete view of the network, and period-
ically picks a random node from the whole network to exchange data witis. Th
permits information known by angnenode to spread to the whole network with
very high probability.

1.3.2. Gossip-based Topology Construction

Maintaining complete membership tables on each node is infeasible for large-
scale, highly dynamic networks. Such an effort would impose tremendaus s
chronization problems, especially since some studies of P2P systems ndeasure
that a large percentage of nodes join for a few minutes or up to an heuB(isag-
wan et al. 2003Saroiu et al. 2003Sen and Wang 200¢

In our work we deviate from the traditional gossiping model in two respects.
First, we drop the assumption of complete knowledge of the network. Eatgh no
maintains only links to a very small numberméighbors constituting itspartial
viewof the network (e.g., only a couple of dozen nodes in networks in the ofder
millions). When gossiping, a node picks a random neighbor from its paréal v
to exchange data with.

Second, the type of data exchanged between nodes is neighbors éiopath
tial views. That is, nodes exchange membership information itself. Aftessijgo
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exchange nodes update their partial views to incorporate (part ofetieved
links, if needed. We are, effectively, dealing with membership management.

By exchanging links and continuously refreshing their partial viewsesod
can self-organize into topologies that better suit certain applications. ficypar
lar, depending on the target application our protocols exchange links in tivo ma
manners:

Randomly Exchanging links at random leads to randomized overlays. That is,
the partial view of each node consists of links to randomly selected neigh-
bors. Note that selecting a random node from a randomized partial view is
essentially equivalent to selecting a random node out of the whole network
which is the assumption made by traditional gossiping protocols. In other
words, randomized overlays can serve as a substrate that allows tiae ope
tion of traditional gossiping protocols in very large and dynamic networks,
bypassing the need for full knowledge of the network. In addition, semd
ized overlays demonstrate remarkable robustness with respect to ¢alge-s
failures, and highly dynamic conditions with nodes joining and leaving fre-
quently. As we will see, they are ideal for keeping large sets of nodes in a
single connected overlay.

Methodically By exchanging links based on certain criteria, nodes can self-organize
in structured overlays. A multitude of P2P applications can be served by
forming the appropriate structures. As we will see, the framework fonfor
ing structured overlays is very simple and generic.

1.4. WHY GOSSIPING?

An interesting question iwhat drove us in pursuing desirable solutions in the
domain of gossiping protocal&et us motivate our decision by presenting a brief
list of the main advantages of gossiping protocols.

Scalability Gossiping protocols are inherently scalable. This scalability stems
from the fact that each node performs a fixed set of operations, &ta fi
rate, irrespectively of the network size. With respect to the load per,node
gossiping protocols are, therefore, virtually infinitely scalable.

Fault-tolerance and RobustnessAs we will see in this dissertation, appropri-
ately designed gossiping protocols turn out to be extremely robust with re-
spect to large-scale failures and node churn. Fault-tolerance is adtgv
means of redundancy, and this proves to be very robust.
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Symmetry Gossiping protocols form symmetric overlays. That is, nodes are
roughly equal, with no node playing a specific, critical role. As a conse-
quence, no single node failure can have a significant effect on thector
operation and state of a gossiping protocol.

Graceful degradation Although individual node failures generally do not dis-
turb the operation of a gossip-based system, large numbers of failures ca
naturally affect it. However, as we shall see throughout this dissertation
performance, functionality, and reliability of gossip-based systems do not
drop rapidly as the number of failures increases.

Adaptability Gossiping protocols appear to form overlays that are highly adapt-
able to network changes and dynamic environments. We will repeatedly see
this throughout this dissertation.

Elasticity Although it is generally feasible to support large-scale services by
means of one or more dedicated servers, the appropriate resouwee® ha
be provisioned for certain load levels in advance. When the load exceeds
a certain threshold, such systems fail to fulfil their duties. When the load
is lower, dedicated servers are underutilized, their resources bestgdva
This issue becomes of higher concern for systems with unpredictable load
or high load fluctuation. In contrast, gossip-based—and generally P2P—
systems do not face this problem, as their resources are inherentlyr-propo
tional to the system load. Since peers asel contribute resources at the
same time, both load and resources grow aside, proportionally to the num-
ber of participating peers. We say that P2P systems are inhesdasic
with respect to load.

An additional, important advantage of gossiping protocols is ieiplicity.
Simplicity is an essential advantage for systems of massive scale, which tend to
be inherently complex. The interesting combination between simplicity and the
remarkable properties of gossiping algorithms, motivated us in exploringftirem
building self-organizing systems.

1.5. RESEARCH METHODOLOGY

The research laid out in this dissertation is validated experimentally. Gossip-
ing protocols generally exhibit chaotic behavior that is too complex to be ftyma
analyzed. Theoretical analysis of our protocols has been out of tipe sif this
dissertation.
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Our experiments were carried out in the following two ways: simulation and/or
emulation. For the former, we simulated up to 100K peers in PeerSim, an event-
driven simulator running on a single physical machiRegrSinh For emulated
experiments we implemented the respective protocols or applications, and de-
ployed them on the DAS-2 wide-area cluster, consisting of 200 physical ma
chines PAS-2]. By mapping a number of peers on each physical host, we were
able to emulate up to 65K peers. Although the majority of the experiments were
carried out by simulation, our emulations provide strong evidence that wdat
see in simulations constitutes a very accurate prediction of protocol behavio
realistic systems.

1.6. OUTLINE AND CONTRIBUTIONS

This dissertation is split in two parts. Pampresents the gossiping protocols
we have developed. Pdttlays out a number of applications making use of these
protocols. Let us now list the chapters that constitute this thesis, along withria s
description of the thesis contributions per chapter.

PART |

Chapter 2 — Building Random Overlays: CycLoON Chapter2 introduces G-
CLON, a gossiping protocol for inexpensive membership management in
very large P2P overlays.X€LON constitutes a fundamental protocol serv-
ing a number of applications presented in subsequent chapters. It Ig high
scalable, very robust, and completely decentralized. Most important is that
the resulting communication graphs share important properties with random
graphs.

Chapter 3— Random Overlays: Exploring the Design SpaceChaptei3 expands
on our study of gossiping protocols that form randomized overlays by ex
tending the gossiping framework introduced Jelasity et al. 2004aand
exploring the design space.YCLON constitutes a specific instance in this
framework. This chapter aims at providing an insight into the factors that
affect certain aspects of the behavior of gossiping protocols.

Chapter 4 — From Randomness to Structure: MCINITY In Chapted we take
a shift and investigate how gossiping and random overlays can bessarhe
to create structure. We present thec\ITY protocol, which, in conjunc-
tion with CycLON builds arbitrary topologies. MINITY is a completely
decentralized protocol, and nodes self-organize to form the desingd str
ture.
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PART 11

Chapter 5— Routing Table Management: Building Pastry Chaptel5 presents
our first attempt to devise structure from randomness. It presents how a
gossiping protocol that builds randomized overlays can be used to build
the routing tables of the Pastry DHR@wstron and Druschel 200.a his
work has preceded thel@INITY protocol, which is more powerful in build-
ing and maintaining topologies. Nevertheless, this research deservesa pla
in this dissertation, as an illustration of our first step in harnessing random-
ness to create structure.

Chapter 6 — Information Dissemination Chapter6 presents a protocol for in-
formation dissemination, that combines gossip-based probabilistic dissemi-
nation (through @CcLON) with deterministic dissemination (through&IN-

ITY). In fail-free and static environments our protocol guarantees dissem-
ination to every single node. In the presence of failures or node chsrn,
performance degrades gracefully, however still managing to deliver mes
sages to a large proportion of the network.

Chapter 7— Semantic Overlay Networks Chapter7 presents how the 3CLON
and MiCINITY protocols can be used to significantly enhance content-based
searching. This is done by establishing links among semantically related
nodes, that is, among nodes of similar content. In essence, the links estab-
lished form a semantic overlay network.

Chapter 8 — SuB-2-SuB: Purely P2P Publish/Subscribe Chaptei8 presents 8B-
2-SuB, afully decentralized, collaborative, content-based publish/subscribe
system. $B-2-SUB is a self-organizing system based on thecCon and
VICINITY protocols.

Finally, Chaptel© summarizes our most significant observations and conclu-
sions, and discusses future directions for the research presentedhbut this
dissertation.
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CHAPTER 2

Building Random Overlays:
CYCLON

The unprecedented growth of the Internet in size and speed has ¢dgdercon-
ception of massive scale applications involving a very large number oirindee

order of thousands or millions. The client-server model of communicationes of

not adequate for applications of such scale. This has encouragenhéngesmce

of an alternative communication model, nampger-to-pee(P2P) systems. The

main philosophy behind these systems is communal collaboration among peers:
sharing both duties and benefits. By distributing responsibilities acrossarall p
ticipating peers, they can collectively carry out large-scale tasks in a senple
generally scalable way, that would otherwise depend on expensilieatied, and

hard to administer centralized servers.

A distinguishing feature of P2P systems is that the peers jointly maintain an
overlay network Unlike traditional layer-3 networks, the structure of these over-
lay networks is not dictated by the (often fairly static) physical presendean-
nectivity of hosts, but byogical relationshipsbetween peers. In particular, P2P
overlay networks are generally required to handle a much higher ratewcong
the joining and leaving of nodes, while at the same time they assume that member-
ship behavior is roughly the same for all nodes. In other words, thegesmigned
to handle highly dynamic, symmetric networks. Overlay management is therefor
a key issue in designing P2P systems.

There are currently two main categories of P2P systems in terms of overlay
management. Structured P2P systems impose a specific linkage structurerbetwe
nodes. Distributed Hash TableBdlakrishnan et al. 20Qare typical examples in
this category. They link peers based on their IDs in a way to enable effi€len
based routing among them. In contrast, in unstructured P2P systems igeeos a
linked according to a predefined deterministic scheme. Instead, links atedre
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either randomly (as is typically done in Gnutella), or are probabilistically based
some proximity metric between nodes (i.e., semantic proximity, leading to what
are known as semantic overlay networks). Unstructured P2P systeprinaaely
designed to support rapid information dissemination and content-basetiisga

in highly dynamic distributed environments, but their utility extends beyond these
applications.

In this chapter we concentrate on gossip-based unstructured P2Pysvénla
such systems nodes self-organize in unstructured overlays by gastipaach
other to discover new links. Two key issues govern these systems. Hfist; d
ing the gossiping protocol specifics that result in overlays with certaimades
properties. Second, ensuring that these properties are maintainedsaritily re-
coverable in the event of major disasters or enduring highly dynamic comslitio
a property often referred to aglf-healing Above all, these requirements should
be met without maintaining any global information or requiring any sort ofraén
administration.

It has been observed that a number of overlays appearing in so@&gec
cal, neural, science collaboration, and phone call networks, as weleaa/orld
Wide Web itself, exhibit properties of small-world and scale-free netwjgkksert
and Barahsi 2002 Newman 200R Certain types of small-world networks are
very appealing, notably when decentralized search is at skdksberg 2000a
b, 2001, 2004. However, in many cases it is better to construct overlays that are
close to random graph8&pllobas 2001 More specifically, random graphs ex-
hibit higher robustness to large-scale failures than small-world netwuaithise
they distribute the load evenly across all nodes in the system. In this chapter w
introduce *CLON, a gossiping protocol that organizes nodes in overlays similar
to random graphs.

Gossip-based unstructured overlays can be used as a building blogkiin a
ety of network management applications, especially when highly dynamic envi-
ronments are anticipated. A good example is self-monitoring in large-scale net-
works, where each node is charged with monitoring a few random ostesng
the monitoring cost. An appropriately chosen overlay management algordhm c
ensure load fairness, and can guarantee that no node is left unditeesidting
in a robust self-monitoring system. Another example is our work on managing
routing tables in very large P2P networké{ilgaris and van Steen 20D3re-
sented in Chaptéb in this dissertation. Stavrou et al. suggest management of
flash crowd crises by disseminating information over gossip-based onstd
overlays Btavrou et al. 2004 In Chapter4 we build on top of the research pre-
sented in this chapter to provide a framework that organizes nodes imllesir
structured topologies. That framework is further utilized in a number olicap
tions illustrated in Pari of this dissertation.
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The problem we address is that of building and maintaining overlays with
properties suitable for diverse applications like the aforementioned dvies
specifically, we are looking into inexpensively building and maintaining vegela
connected overlay networks that exhibit important properties of rarglaiphs.
These properties should be maintained even in highly dynamic environments. |
essence, we are interested in inexpensive membership management, imsthe se
that any disruption of the overlay’s properties resulting from joining oriteav
nodes should be quickly and efficiently corrected. We assume that nwdetin
a small, partial view of the entire network. Our starting point is the view exgpdan
protocol described irdtavrou et al. 2004 That protocol ensures that connectivity
of the overlay is maintained as long as membership does not change.

We make two contributions. First, we provide an experimental analysis of the
basic swapping protocol for large networks, examining properties asaius-
tering and node degree distribution. These experiments have not beduncted
before, and, in particular, not on large networks. We demonstrate lagipsng
neighbors is indeed a promising exchange protocol.

Second, and most importantly, we describeaCon?, a complete framework
for inexpensive membership managementcCoN introduces an enhanced ver-
sion of swapping, which results in node-degree distributions that exreltierh
properties than those found in overlays resulting from basic swappiryen in
random graphs. Moreover, it includes better, in terms of efficiencycaradity,
management of node additions and removals, which allows us to establish truly
inexpensive membership management that does not disrupt the randarhties
overlay network.

2.1. THE PROTOCOL

CycLON is based on thewappingoperation, by which two nodes gossiping
with each otheswapsome randomly chosen links of theirs. The main intuition
behind this operation is to mix links, resulting in overlays resembling random
graphs. The experimental analysis following in SecBidhconfirms this intuition.

2.1.1. Basic Swapping

The basic swapping algorithm, introduced Btdgvrou et al. 2004 is a simple
peer-to-peer communication model. It forms an overlay and keeps it ctathe
by means of an epidemic algorithm. The protocol is extremely simple: each peer

1The name @cLoN was inspired by the protocol’s power in mixing nodes in the network, sort
of like a tornado. It is also inspired by the Greek origin of the wdagklos(=circle), due to the
uniformity it imposes on the overlay.
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knows a small, continuously changing set of other peers, calleei¢ghbors and
occasionally contacts a random one of them to exchange some of theiborsgh

More formally, knowledge regarding neighbors is stored and excliahge
means ofnode descriptors A node descriptor referring to pe€rcontainsP’s
contact information, (i.e., network address and port). Each peer maiatamall,
fixed number of node descriptors, which constitute view of the network. Typ-
ical values forZ are 20, 50, or 100. When the view of pé&contains a descriptor
of peerQ, we say thaf) is a neighbor oP, or thatP has alink (or pointer) to Q.
These expressions will be used interchangeably.

Each peelP repeatedly initiates a gossip exchange (also referred to as view
exchange), known aavapping by executing the following six steps:

1. Select a random subset@heighbors (1< g < /) from P’s own view, and
a random peelQ, within this subset, wherg is a system parameter, called
gossip length

2. Replace the descriptor @fwith that of P.
3. Send the updated subset to p@er
4. Receive fromQ a subset of no more thayof Q’s descriptors.

5. Discard descriptors d? (if any), and descriptors that are alreadyRis
view.

6. UpdateP’s view to includeall remaining descriptors, kirstly using empty
view slots (if any),secondlyreplacing the descriptor d, andfinally re-
place descriptors among the ones ser@pto

Upon reception of a gossip request, p€erandomly selects a subset of its
own neighbors, of size no more thgysends it to the initiating node, and executes
steps 5 and 6 to update its own view accordingly.

Figure2.1presents a schematic example of the basic swapping operation.

2.1.2. Enhanced Swapping

CycLoN employs an enhanced version of swapping, that, as we shall show in sub-
sequent sections, among other things improves the quality of the overlaynis ter

of randomness. Enhanced swapping follows the same model as basirsgvap
The key difference is that nodes do mahdomlychoose which neighbor to swap
views with. Instead, they select the neighbor whose information was thestar
one to have been injected in the network.
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2—9:{2,0,6}
(a) Before swapping 2-9:{0,57} (b) After swapping

Figure 2.1: An example of swapping between nodes 2 and 9. Note that, among
other changes, the link between 2 and 9 reverses direction.

The first motivation behind this enhancement is to limit the time a node de-
scriptor can be passed around until it is chosen by some node for axibaree.
As we shall see in Sectidh4, this results in a more up-to-date overlay at any given
moment, as it prevents links to dead nodes from lingering around indefinitely.

The second—and far less obvious—motivation is to impose a predictable life-
time on each descriptor, in order to control the number of existing links toemgiv
node at any time. In Sectioh2.3we will show that as a consequence of that,
pointers are distributed in a remarkably even way across all nodes.

To accommodate the aforementioned issues, node descriptorsdno®
contain an extra field calledescriptor age or simplyage That is, a GCLON
node descriptor referring to nodkeis a tuple containing the following two fields:

1. P's contact information (i.e., network address and port)
2. A numericagefield

The age field denotes roughly the age of the descriptor expresaddiimervals
since the moment it was created by the node it points at. We emphasize that it is
an indication of the lifetime of a particular descriptor, not the lifetime of the node
itself.

In enhanced swapping nodes initiate neighbor exchanges periodicllypty
synchronized, at a fixed peridiT. The enhanced swapping operation is per-
formed by letting the initiating ped? execute the following seven steps:

1. Increase by one the age of all descriptors.
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2. Select neighbd® with the highest age among all neighbors, grél other
random neighbors.

Replace the descriptor @ with that of P (with age 0).
Send the updated subset to p@er

Receive fromQ a subset of no more thgtof its own neighbors.

o o M W

Discard descriptors d? (if any), and descriptors that are alreadyRis
view.

7. UpdateP’s view to includeall remaining descriptors, iyrstly using empty
view slots (if any),secondlyreplacing the descriptor dp, andfinally re-
place descriptors among the ones ser@pto

Like in basic swapping, the receiving noQeeplies by sending back a random
subset of at mogj of its neighbors, and updates its own view to accommodate all
received ones. It does not increase, though, any descript@’srad its own turn
comes to initiate a gossip exchange.

Note that after nod® has initiated a gossip operation with its neighkpiP
become®’s neighbor, whileQ is no longer a neighbor &?. That is, the neighbor
relation betwee® andQ reverses direction. As a consequence, the indegrBe of
increases by one, while the indegredpflecreases by one.

Figure 2.2 shows the pseudocode of a generic gossiping skeleton modeling
CycLON. The functions appearing in boldface, nameBi ect Peer (), se-
| ect ToSend(), andsel ect ToKeep() , form the threehooksof this skele-
ton. Different protocols can be instantiated from this skeleton by implementing
specific policies for these three functions, in turn, leading to differentrgene
behaviors. The policies implemented by @ oN are presented in Figuie3.

As a final note, given the asynchronous nature of the protocol, trepiog
procedure of a node may be interrupted by a swap request by anaiter No
measures are taken to explicitly control concurrency issues. Practieedhhat
occasional intervening swaps do not alter the macroscopic behaviar system
(see SectioR.6).

From now on, any references savappingapply toboth basic and enhanced
swapping. Otherwise, the swap type will be explicitly specified.

2.2. BASIC PROPERTIES

As it turns out, swapping has some desirable statistical properties. In orde
to observe the characteristics of the overlay, we need to consider theatiwity
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do forever

{ . . : do forever
wait (T tinme units) {
incr. all descriptors’ age by 1 receive buf recv from Q
Q «— sel ectPeer () buf _send — sel ect ToSend()
remove Q fromview send buf_send to Q

buf send « sel ect ToSend() ) _
send buf_send to Q ) view «— sel ect ToKeep()

recei ve buf _recv fromQ
vi ew < sel ect ToKeep()

Active thread Passive thread

Figure 2.2: The generic gossiping skeleton fofrdCoN.

Hook Action taken

sel ect Peer () Select descriptor with the oldest age

sel ect ToSend()
active thread| Selectg— 1 random descriptors.

Add own descriptor with own profile and age 0.

passive thread Selectg random descriptors.

sel ect ToKeep()

active thread| Keep allg received descriptors, replacing (if needed) the
descriptor selected ksel ect Peer () and then theg—
1 ones selected tsel ect ToSend() .

passive thread Keep allg received descriptors, replacing (if needed) the
gones selected hyel ect ToSend() .

In case of multiple descriptors from the same node, keep
the one with the lowest age.

Figure 2.3: Implementation of the generic gossiping skeleton hooks, forthe C
CLON protocol.
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graph, that is, the graph having the peers as vertices, and the linkseletivegn
as (directed) edges. In this section we consider—unless otherwise-sthted
undirected version of the connectivity graph, which is taken by simplyingp
the direction of the edges. The motivation behind this is that we are interested
rather in the “can-communicate” than the “knows-about” version of thptgra
node has the same potential to communicate with another node either if the first is
a neighbor of the second or vice versa.

In this section we show and experimentally analyze the basic properties of
the basic and enhanced swapping protocols. All experiments presamtedave
been carried out with an event-driven simulator we developed in C++.

2.2.1. Connectivity

The fundamental property of swapping is that, given a fail-free enmieott, con-
nectivity of the overlay is guaranteed.

Considering the trivial case ahdividual nodes’ connectivity, it should be
clear that no node becomes disconnected as a result of a swap opdtaiimply
moves from being the neighbor of one node to being the neighbor of andtiie
provides an intuitive indication that connectivity is generally preserved.

To provide a complete proof, we now show that an overlay cannot beirsplit
two disjoint subsets as a result of a swap operation. Assume two subsetd
B connected by at least one link. For instance, some nodehas a pointer to
some node iB. Swaps within subsek may pass this pointer around, but it will
always point at the same node B) keeping the two subsets connected. Swaps
within subse do not interfere with this link. Finally, a swap between the node
in A currently holding the pointer, and the nodeBtbeing pointed at, will simply
reverse the direction of the pointer, thus maintaining the link between the two
subsets. Therefore, no swap operation can reséltandB (or generally any two
subsets of the overlay) becoming disconnected.

2.2.2. Convergence

In this section we study the convergence of specific statistical propefties-o
CLON, namely the shortest path length, and the clustering coefficient, outlined
below.

The shortest path lengthetween nodeB andQ is the minimum number of
edges needed to traverse to re@dinom P. Theaverage path lengtis the average
of the shortest path lengths between any two nodes. The average mthitea
metric of the number of hops (and hence, communication costs and time) to reach
nodes from a given source. A small average path length is therefastedsor
broadcasting or, generally, information dissemination applications.
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Theclustering coefficienvf a node is defined as the ratio of the existing links
among the node’s neighbors over the total number of possible links among them.
It basically shows to what percentage the neighbors of a node areetgtbors
among themselves. Tlaverage clustering coefficierst the clustering coefficient
averaged across all nodes in the network. It is generally undesiatade bverlay
to have a high average clustering coefficient for two reasons. Firsgakens
the connectivity of a cluster to the rest of the network, therefore incrgdke
chances of partitioning. Second, it is not optimal for information dissemination
applications due to the high number of redundant message deliveries within h
clustered node communities.

To study the emergent behavior ofr CLON, we define aycleto be the time
period during which a number of gossip exchanges equal to the numhede$
have been made. Since nodes initiate gossip exchanges periodicallysatrtbe
rate, a cycle coincides with the gossip pertdd. Note that during a cycle, each
node has initiated a gossip exchange exactly once. We studied the pr®tocol’
emergent behavior by observing the aforementioned statistical propertisses
0, AT, 2AT, etc.

Note that the selection of the periddl effectively regulates the speed at
which an experiment runs in real time. However, it does not affect tbeopr
col's emergent behavior or its convergence speed with respect to thieenwof
cycles elapsed. Neverthelead, should not be comparably short to twice the typ-
ical latencies in the underlying network, as network delays would unpeddyc
affect the order in which events are taking place. Typical valuésiof 10secor
higher are recommended for experiments running over a wide-arearketwo

We conducted a series of experiments involving networks containing up to
100,000 nodes. In fact, we initialized our experiments in various diffexays,
including random, star, lattice, and gradually growing topologies. We wvéder
that the statistical properties of the emerging overlay always convergeel éaact
same values, irrespectively of the bootstrapping method employed each time. T
experiments presented in this section (Fgl) were intentionally bootstrapped
with the worst imaginable setting. Nodes were set to form a “chain”, eadh no
having a single neighbor, namely its previous one. For instance, thegaveath
length was initially the longest possible: 99,999 hops were needed to reach th
first from the last node.

Figure 2.4(a) demonstrates a significant aspect of the emergent behavior of
swapping. It clearly shows that the average path length convergesty amall
value, which coincides with the average path length of a random graph with th
same number of edges.

Figure2.4(b) shows that swapping exhibits convergent behavior for the clus-
tering coefficient. In our experiments, the clustering coefficient alwayserged
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Figure 2.4: (a) Average shortest path length between two nodes feratiffview
lengths. (b) Average clustering coefficient taken over all nodes.

to values practically equal to the clustering coefficient of random gralglose-
over, both the average path length and the clustering coefficient gnaénost
exponentially (linearly in the log-linear graph).

Note that these experiments ran for several thousand cycles. Howeler
the initial cycles are depicted, as the values remained stable for all s@mequ
cycles, indicating convergent behavior.

Figure2.5shows the converged values for the average path length and the av-
erage clustering coefficient, for overlays of different numbers alesaand view
lengths. Two initial observations can be made. First, the average path length
increases logarithmically as a function of the number of nodes in the ovEday.
ond, the clustering coefficient drops exponentially (linearly in the log-iegl)
as a function of the number of nodes.

What is more interesting is that both the average path length and the clustering
coefficient converge to the exact values expected in a random gfdpbl same
number of nodes and links. A random graph is a graph where an etigedretwo
random nodes exists with a probabiljy Consequentlyp is equal to the ratio of
existing links among nodes, over the total number of node pairs (total nushber
possiblelinks). Also, in random graphs, the average clustering coeffic&g,
is equal top. Therefore, it follows that

B #links _ #links
~ total # of possible links NX(lz\lfl)

Cand=Dp (2.1)

whereN is the number of nodes. For the sake of comparison, we consider random
graphs with an equal number of links as in our graphs. In our overlayydmber
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Figure 2.5: Converged state offCLON. (a) Average shortest path length between
two nodes. (b) Average clustering coefficient taken over all nodes.

of links isN x ¢, where/ is the view length. By substituting that 211, we get:

2
Crand = ﬁ (2'2)

N—-1
One can observe that formua2, which gives the clustering coefficient for
random graphs of the same number of nodes and edges as ours, ®aisepr
the exact values retrieved through experimentatioc2 %b). This proves that the
overlays formed by swapping have the same clustering coefficient asks
random graphs.

2.2.3. Degree Distribution

Thedegreeof a node is the number of links it has to other nodes, in the undirected
connection graph. The interest in the degree distribution stems from #asers.
First, the degree distribution is highly related to the robustness of the overlay
in the presence of failures as it shows the existence of weakly connectiss
and massively connected hubs. Second, it is an indication of the wayngipg&le
are spread. Third, it provides an indication of how fairly links are distatu
among nodes, and, as a consequence, an indication of the distributesoafce
usage (processing, bandwidth) across nodes. For the sake stiebs, efficient
information dissemination, and load balancing, it is desirable to have a bdlance
uniform distribution of links across all nodes of the overlay. In otherdsoit is
desirable to have a degree distribution with low standard deviation.

In the directed version of the connection graph, we distinguish between the
outdegree and theindegreeof a node, which are the number of edges leaving
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Figure 2.6: Indegree distribution in converged 100,000 node overaydsic
swapping, enhanced swapping, and an overlay where each nodedratomly
chosen outgoing links. (a) View length= 20. (b) View length¥ = 50.

from and ending at the node respectively. In our case, the outdefesery node
is fixed, and equal to the view length. Therefore, we concentrate @mnobg the
indegree distributiorof our overlays.

Figure2.6 shows the indegree distribution for both basic and enhanced swap-
ping for two different view lengths. The indegree distribution of an oyewéh
¢ randomly chosen outgoing links per node is shown as well for comparlson.
both protocols, the indegree distributions demonstrate a peak at the ieéegra
to the view length, while the number of nodes having larger or smaller indegree
drops symmetrically according to the shift from the view length.

It is, however, clear that enhanced swapping does a significantly helter
with respect to spreading out the links extremely evenly across all nédeshe
experiment with view length 20, 80.31% of the nodes have an indegreetBZ0
For the experiment with view length 50, 93.95% of the nodes have an irelefre
50+ 5%. The respective percentages for basic swapping ae2%6and 3847%.

To understand €CLON’s enhancement with respect to the indegree distribu-
tion, we should take a closer look at the life cycle of pointers. A pointer t@nod
P is bornwhenP initiates a swap with one of its neighbors, $@yln the absence
of failures this pointer will remain in the network, possibly hopping from ntude
node as a result of subsequent swaps. It diglonly when it is selected by the
node currently holding it, saR, to perform a swap witt®, in which case it will
be replaced by a fresh pointer frdPio R.

In both basic and enhanced swapping exaatignew pointer to each node is
born in each cycle, since each node initiates exactly one swap operatiomevetr,
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Figure 2.7: Effect of gossip length on convergence spiiedd.00,000.

the two protocols differ in theeath rateof pointers.

In basic swapping, any number of existing pointers to a given node can die
a single cycle, as they are selected for swappimgandom As the death rate does
not follow the birth rate closely, the distribution of tpepulationof pointers to
individual nodes has a high standard deviation, resulting in the wide dittmbu
of Figure2.6.

In enhanced swapping, in each cycle a nBds contacted by one other node
on average to do swapping, thus inserting one new pointer of age 0 in itsaridw
pushing out of its view the pointer of maximum age. In the subsequent thale,
pointer of age 0 is upgraded to age 1, and a new pointer with age 0 refhaces
currently oldest pointer. As a result, a node’s view contains on averagpointer
of each age, from 0 t6— 1. This means that replaced pointers are typically of age
around/— 1. In other words, a pointer has a lifetime of abouaycles. Taking this
observation one step further, in each cyoiee pointer to a given node will die,
the one injected by that nodecycles ago. So, the death rate of pointers to a given
node is very close to one per cycle, that is, very close to the birth ratpirkpe
the population of pointers to that node almost static. This intuitive result can be
clearly seen in the distributions of Figu2e5.

2.2.4. Dependency on Gossip Length

We conducted a series of experiments to examine the effect of the gosgib len
on convergence. Interestingly, for all overlays we tried, the comebggate with
respect to the average path length, average clustering coefficieningegtee
distribution, proved to beéndependenof the gossip length used. The only effect
of the gossip length was in the number of cycles it took to reach the comverge
state.
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We used the indegree distribution as a metric to identify at which cycle an
overlay converges. As the indegree distribution does not convergeatinum-
bers, but to a certain graph shape whose points keep slightly fluctuatnigaeyv
to use an approximation algorithm to identify the convergence point. In particula
we recorded the indegree distributions for the first 1000 cycles ofequdriment.

In all cases, by looking at the distribution series we could tell that they eare
tainly converged well before the 900th cycle. We computed the averaggreel
distribution of the last hundred cycles, namely cycles 900-999. Substyfer
each cycle = 900. ..999 we calculated theum of squared errors;Ebetween this
cycle’s indegree distribution and the average one. The sum of sqeaed for
cyclei is defined as follows:

E = ki(xik —Xk)

whereX; = {Xo, X1, Xi2, - - . } is thei-cycle distribution, anc = {Xo,X1,%2,...} is
the average distribution of cycles 900-999. We, then, figured out theéxmax of
these values,

Emax= max Egoo, - . . , Eggo}

This was used as the maximum threshold of the sum of squared errorsiger@ns
distribution converged. Finally, starting from cycle 0, we checked ortglalision
at a time to find the first cyclewhoseE; was below that threshold. This cycle was
logged as the cycle for which this experiment converged.

To demonstrate the gossip length’s effect independently of the initial condi-
tion, two different bootstrapping methods were used. The first ciman is the
one described in Sectidh2.2 considering nodes in a line, each node has a single
link to its previous one, forming a chain topology. In the second bootstrgppin
method,star, all nodes initially have a single neighbor, the same one for all of
them, essentially forming a star topology.

Figure2.7 presents the number of cycles an experiment took to converge as
a function of the gossip length, for 100,000 nodes, and view lengths @B@&n
In all cases, swapping just one neighbor at a time took clearly the longeap-S
ping two, three, or more neighbors, gradually sped up the process.eudow
no significant improvement was noticed beyond gossip lengths of abditaig
ten. Counter intuitively, convergence speed degraded suddenly sviegoping
the whole view, or almost all of it. The reason behind slow convergencereith
when swapping toéew or toomanyneighbors is that in either case views are not
mixed up too much by each swap operation. Therefore, a view is only minimally
(if at all) enriched with new links, even if it has moved as a whole to a new node
in the case of full view swapping.
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This result has more significance when bandwidth is an issue, since tip gos
length linearly affects the amount of bandwidth used bycCoN. Choosing a
gossip length as low as around six or eight results in nearly optimal camvezg
speed, while keeping bandwidth utilization to relatively low levels. We return to
this issue in SectioR.6.

2.3. ADDING NODES

CycLON introduces a new method for nodes to join the overlay efficiently,
without disrupting randomness. To join, a new node simply needs to know any
single node that is already part of the overlay, callednitoducer. Such a node
can be discovered in various ways, including broadcasting in the lotabrie
making use of a designated multicast group, or even contacting a well-known
server, etc. Finding such an introducer is out of the scope of this ahaiee,
we are interested in how to join once an introducer is known, without affgttie
basic properties of the system.

To this end, a key observation is that due to the randomness of the connec-
tivity graph, a random walk of length at least equal to the average pagthlén
guaranteed to end atrandomnode of the overlay, irrespectively of the starting
node.

Based on this observation, a new ndelean join in a fairly straightforward
manner.P’s introducer initiated (view length) random walks, setting their TTL
(time to live) to a small value close to the expected average path length, such as
four or five. A nodeQ where a random walk ends, replaces one of its neighbors
with a new link toP. Q then forwards the replaced neighboRtowho, in turn, has
to include itin its view. In effect, this operation is equivalenBtitiating a swap
of gossip length 1 with nod®. The join operation ends when dllandom walks
have ended and the corresponding neighbor exchanges havecoeempéished.

We claim that this join operation makes it impossible for an external observer
to distinguishP as being different from the rest of the nodes, or to discover any
randomness disruption in the overlay. Fig§ view is filled up with/ randomly
chosenneighbors, which renders the valuesR¥ average path length to reach
any other node as well as its clustering coefficient, indistinguishable frem th
respective values of other, older nodes. Second, since thefeardom nodes in
the overlay that knowP, P’s indegree is equal to the view length. Third, no other
node’s indegree has been modified.

In the presence of node failures or an unreliable network, some ofitidema
walks may fail. Note, however, that a node’s join does not depend orothplete
execution of this join procedure. We ran experiments (not presente] thet
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showed that a node can join by simply being involved in a swap with a single
participating node. In that case, though, it will take a few cycles until thve ne
node’s properties become indistinguishable from the respective piexpef other
nodes. The join procedure described above is meant as a meansiehefimde
joining at a cost of a constant number of messages.

2.4. REMOVING NODES

In a dynamically changing overlay, nodes may leave for various reasahs
in various ways. We make no distinction between nodes disconnectinduhace
or abruptly. What we are interested in is that, once a node disconnects, oth
nodes should detect it and remove any pointers to it in a timely manner. We
consider pointers to disconnected nodes to constitute a sort ofpadution, as
they take up slots that could be otherwise holding valid, useful links. Pantigula
in highly dynamic environments, timely elimination of dead links is crucial for
the robustness of the overlay.

In order to keep the protocol simple and inexpensive, we do not adéxany
plicit messages (such as frequent pings) to detect disconnected nodesad,
CyCLON uses a transparent dead-link detection mechanism, based on the default
swap operation. We do, however, employ an effective strategy (by srafahe
agefield introduced in enhanced swapping) to improve timely detection of dis-
connected nodes “for free”, as a natural consequence of the enmtdrghavior of
enhanced swapping.

When a node tries to initiate a swap with a neighbor and gets no reply within
a predefined timeout, it simply assumes that neighbor to be disconnectee-and r
moves the corresponding neighbor from its view. This way, dead linkgrau-
ally being removed. Note that the timeout should be at least twice the maximum
typical latency in the underlying network. For simplicity, a timeout equal to the
gossip period\T would suffice.

In the case of basic swapping, the detection of dead links relies on chadce
takes unbounded time. INYCLON’s enhanced swapping, though, the age field
defines a key priority in which neighbors are contacted. A young desciie.,
with low age), whose node is quite probably still alive, is less likely to be ahose
for swapping. In contrast, a descriptor that has been injected in the mketewo-
eral cycles ago (and has since been hopping around between nalgsgbssip
exchanges), is more likely to be the oldest one in the view currently hostinglit, a
therefore more likely to be selected to gossip with. In general, the longede no
descriptor stays in the network, the higher the chances it is selectedssipgm.
WhenP initiates a gossip and selects a descriptor referring to Qettrat descrip-
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Figure 2.8: (a) Time until dead nodes are forgotten. (b) Number of delesl lin

tor is then replaced by a fresh (i.e., with age 0) descriptor of pe@iis process
naturally recycles the node descriptors, maintaining an equilibrium with cespe
to their ages, consequently limiting the lifetime of a link. This way, it is no longer
possible for old links to disconnected nodes to linger around indefinitely.

To demonstrate the advantages ofdCoN’s enhanced swapping with respect
to node removal, we ran experiments where we suddenly killed half of thesnod
after the overlay had converged. As we shall show in the next sectioh asdras-
tic change poses no threat to the (remaining) overlay’s connectivity.baereed
how long it took for the remaining nodes to “forget” the dead ones. Figuse
shows the respective graphs for the experiment with 100,000 nodes, which
50,000 were killed at once. Figuie8@a) shows how long dead nodes are still
referenced, while Figur@.8(b) shows the number of dead links that are main-
tained since the nodes were Kkilled. It is clear that enhanced swapping limits the
detection of dead nodes to a number of cycles equal to (in fact less tleavigti
length, while basic swapping takes almost an order of magnitude more cycles to
decontaminate the surviving nodes’ views.

2.5. ROBUSTNESS - SELF HEALING BEHAVIOR

In the previous section, we dealt with node disconnections, and we methtione
that killing half of the nodes at once does not threaten the connectivityeaketh
maining ones. In this section, we explor&€ oN’s limits in terms of robustness
to node disconnections. Swapping proves to be a very strong and egdsmic
protocol with respect to keeping an overlay connected. Moreovepéar's to ex-
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hibit robustness to node disconnections similar to the one found in randarhsyr

We conducted experiments as follows. We use(ON to create overlays
(until they converged), and subsequently examined how the connedgvitfy
fected by node removals. Figuge9 presents the results for networks with ini-
tially 100,000 nodes, and view lengths 20, 50, and 100, respectivalyh&sake
of comparison, it also presents the same graphs for overlays of viethl2@@nd
50, where the neighbors were randomly chosen among the whole nodsoset.
that basic swapping has the same behavior as enhanced swapping p&itt tes
robustness, and therefore the corresponding graphs are nab.skayure2.9(a)
shows the number of disjoint clusters as a function of the percentage et nod
removed. Note that the number of clusters decreases as we appr@&6mate
removal because the total number of surviving nodes becomes too small. Fig
ure 2.9b) shows the number of nodes not belonging to the largest cluster, in log
scale.

These graphs show considerable robustness to node failuresiaigpzm-
sidering the fact that in the early stages of clustering very few nodesudaref
the largest cluster, which indicates that most nodes are still connectednigla s
large cluster. Moreover, swapping appears to share the same rasustoperties
with overlays where each node’s neighbors are a random sample oddles m
the network.

Note that the graph for the experiment with view length 100 is practically a
flat line. That is, for 100,000 nodes and view length 100, the overlat@das so
robust, that no matter how many nodes are removed, the remaining ones remain
connected in ainglecluster.

The effect of the view length on the overlay’s robustness is shown in Fig-
ure 2.10 We carried out 100 experiments, with view lengthg,1..,100, and
for each of them we determined the percentage of random nodes rtedude-
moved in order to partition the overlay. It can be seen that there is a critittad v
of the view length around eleven. Overlays with smaller view lengths exhibit sig
nificantly worse behavior with respect to robustness. On the other baedays
with view length over 85 or 90, are almost impossible to partition, no matter how
many nodes are removed.

It is important to point out that the results presented in this and the previous
section, suggest thatYCLON is capable of repairing an overlay after a serious
disaster, a property often referred to sedf-healingbehavior. This comes as a
consequence of the following two facts. First, the overlay has provee kignly
resilient to large-scale node failures. Second, once such a maskive Fas oc-
curred, the surviving nodes quickly strengthen the connectivity amamgsblves
by replacing links to dead nodes with valid links in a timely manner.
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majority of the nodes.
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Figure 2.10: Tolerance to node removal, as a function of the view lengtindxle
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2.6. BANDWIDTH CONSIDERATIONS

Due to the periodic behavior of gossiping, the price of maintaining a robust
overlay may inhibit a high usage of network resources (i.e., bandwidth)hd
case of CLON, the per-node network load depends on two factors: the amount
of data transferred per cycle, and the cycle duration.

In each cycle, a node gossips on average twice: exactly once as an linitiato
and on average once as a responder. It, therefore, on aveeagks, tsvo gossip
messages and receives another two in each cydaigs the gossip length, a gossip
message consists ghode descriptors. A node descriptor is assumed to be 8 bytes
long (IP address: 4 bytes, port: 2 bytes, age: 2 bytes), so, a goss§ageeis 8g
bytes long. Therefore, in each cycle a node experiences a total waféiz- g
bytes.

Choosing a gossip length in the range of 3 to 8, we achieve nearly optimal con
vergence speed with respect to the number of cycles (see RIglire he choice
of the periodAT depends on the underlying network’s bandwidth availability, as
well as on the network’s expected churn rate and the application’s negditk
convergence. For relatively fast convergence, say, within a fewteshwe could
setg = 8 andAT = 10sec In this case, a node would transfer 256 bytes every
10 seconds, that is, 25.6B/see400bps). This is very low bandwidth that could
be sustained even by modem connections. For less demanding envirotima¢nts
experience limited churn and failure rate, we couldget 1 andAT = 1min,
resulting in a negligible bandwidth of less than 5bps per node.

This analysis backs our claim abouy €LON being inexpensive. Finally, note
that all communication is carried out in a connectionless fashion, sendirigy UD
packets.

2.7. APPLICATIONS

CycLON is a core technology that can be employed as a building block in
P2P applications, particularly in highly dynamic environments. The applications
briefly described in this section demonstrate the utility ofoCon in a range of
different contexts.

In our work on Chapted, we use CLON as a component in a composite
gossiping protocol that establishes links between nodes that demonsinage s
relationship, building (almost) arbitrary topologies. In this caseciON serves
as a lightweight means of learningndomnodes of the network.

Another potential use of @CLON is self-monitoring for very large clusters
of nodes, possibly in the wide-area, avoiding centralized or hieraichichi-
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tectures. In such a scheme, each node of a cluster is monitored by some othe
random nodes of the cluster. The bounded indegree of nodes stisatat any
given moment, each and every node will be pointed at (and therefore me)jito

by a number of other nodes more or less equal to the view length. This ensure
that no node will be left unattended at all.

In [Stavrou et al. 2004the basic swapping algorithm is employed to construct
an overlay that handles flash crowds. Upon detection of a flash cromditmon
with respect to a document request, a client node abandons the resectier,
and attempts to retrieve the document in question from peers that haveyalread
obtained it. In order to locate the document, the client node performs a series
of randomized, scoped searches over the links of the overlay creptbdsic
swapping.

In our work in Chapteb (also appearing inoulgaris and van Steen 2003
we apply a different gossiping protocol EM/SCAST [Jelasity et al. 2003voul-
garis et al. 200B(described below), in managing P2P routing tables. In particular,
we exploit the randomized overlay ofdWSCASTto pick nodes that satisfy cer-
tain criteria, to fill in Pastry-like Rowstron and Druschel 200Lleuting tables.
CYCLON is, in fact, a better candidate thareWscCAsSTIn that application, as it
exhibits a superior randomness property and lower bandwidth requiteicen-
pared to NFWSCAST.

Finally, in Newscast EMKowalczyk and Vlassis 20Q4Kowalczyk and Vlas-
sis use @cLON for data aggregation, and more specifically as a component of a
distributed Expectation-Maximization (EM) algorithm for probabilistic clustering
of a set of (geographically) dispersed data. In particular, they cdachat aggre-
gation using @CLON is performedasterthan in a fully connected graph. This is
due to the bounded indegree of nodes, which results in each node laavagial
influence on the aggregation.

2.8. THE NEwsCcAST PROTOCOL

For the sake of completeness, we now turn our attentionBa/$EAST, a
protocol that preexisted Y LON, and which greatly contributed in developing a
mindset that led to the design of the latter.

NEWSCAST, invented and introduced by &k Jelasity et al. inJelasity et al.
2003, is a protocol for membership management and information dissemination
in large-scale, distributed systems. Much likedZ oN, it employs a simple epi-
demic protocol to form an overlay network and to keep it connected.

NEwscAsTand CrCcLON operate along very similar gossiping paradigms. In
short, their differences lie in the following three key points. First, with respe
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peer selection, in BwscAsTnodes select eandomneighbor from their views
to gossip with, rather than the oldest one imcCZoN. Second, when gossiping,
nodes always send each other thefrole view. Third, views are not swapped
when gossiping. Instead, they amerged and each node updates its view by
keeping the youngest pointers out of this merged set.

In addition to these three key difference\WscAsTemploystimestampso
track a pointer’s age, in place ofv€LON’s agefield. However, this is merely
a matter of choice that does not significantly affect either protocol’s\heha
Therefore, it does not constitute a key difference between the twoqaisto

We subsequently provide a brief overview oEWSCASTs operation, and
then explore some properties of its emergent behavior.

2.8.1. Principal Operation

In NEwscAsTeach node maintains a small, fixed-sized view pkers. A node
descriptor contains the network address of another peer, timéstamplenoting
when this descriptor was created. For simplicity we currently assume globally
synchronized time, but we relax this assumption below.

The basic idea is that each node periodically picks a random peer fromuits v
to gossip with and subsequently both nodes replace their view entries with the
freshest descriptors of the union of their original views. More formakygh node
P executes the following five steps once evAflytime units AT is referred to as
therefresh interval:

1. Randomly select a pe€rfrom P’s own view.

2. Add a fresh descriptor (i.e., timestamped with the current time) R&h
address td’s own view.

3. SendP’s view to Q, and, in return, receiv®'s view (augmented by fresh
descriptor 0fQ).

4. Discard descriptors d? (if any), and descriptors that are alreadyRis
view.

5. Keep the newest descriptors and discard the rest.

PeerQ executes the last four steps as well, so that after the exchange both

peers have the same merged view set, except for a pointer to each otiter. N
however, that as soon as any of them executes the protocol agairrgspactive
views will most likely be different again.
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Figure 2.11: NewscAsTconverged state. (a) Average shortest path length be-
tween two nodes. (b) Average clustering coefficient taken over att$10d

This algorithm resembles the traditional push-pull epidemic protazeifriers
et al. 198T. A critical difference, however, is that no correspondent knoves th
complete member list, but only a small, random fraction of it.

Finally, regarding the synchronized time assumption, the protocol does not
really require that clocks be synchronized, but only that the timestamph of a
descriptors in a single view be mutually consistent. We assume that the communi-
cation time between two peers is much shorter tv@r(which is generally in the
order of tens of seconds or minutes). When a [fepasses its view t@, it also
sends along its current local tim&. WhenQ receivesP’s view, it adjusts the
timestamp of every descriptor with a vallig— To, effectively normalizing them
to its local time.

2.8.2. Properties of NFWSCAST

In this section we provide a brief presentation cfWSCASTs basic properties,
under the prism of €CLON. It is particularly interesting to see how the two
protocols’ different design choices reflect on their behavior.

Average path length First, with respect to the average path length between
nodes, the two protocols’ difference is rather insignificant. Figuid(a) shows
the average path length inBWscAsT overlays for a multitude of view lengths
and network sizes. AlthoughYZLON overlays exhibit slightly lower average
path lengths, as seen in Fig@té(b), we do not consider this a noteworthy differ-
ence.
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Clustering A more substantial difference is observed with respect to clustering.
Figure2.11(b) shows the average clustering coefficient f&wWsCASToverlays

of various view lengths and network sizes. Clustering is significantly highwer
pared to the respectiveYCLON overlays shown in Figur2.5b).

High clustering is a direct consequence of thewsCAST protocol opera-
tion. After a view exchange, two nodes share exactly the same view,fegrara
pointer to each other. In essence, by exchanging views two nodes maxiimize
clustering with respect to each other. Exactly the opposite happensdndi.

By swappingneighbors, two nodes maintain their views’ diversity. In fact, two
views’ diversity may eveimcreasein case a common neighbor is shipped over to
the other peer, and subsequently discarded while eliminating duplicate gointer
The effect of keeping common neighbors as opposed to distinct ones aitav
exchange, is further studied and analyzed in Chepter

Note that the combination of high clustering with low average path length
suggests that the inducedeN'scAsToverlays have many properties in common
with what are known asmall-world networkgAlbert and Barabsi 2002. In
contrast, &CLON overlays have shown to resemble random graphs.

Degree distribution Figure2.12shows the indegree distribution oEM/SCAST

and CrcLoN overlays, as well as for a regular random graph. We consider graph
with 100,000 nodes, and view lengths 20 and 50, respectively. Thealeakis is

in logarithmic scale. There is a clear difference between the two protocalssN
CAST exhibits a widely skewed distribution of incoming links centered around
small values, with a tail reaching out to almost an order of magnitude higher
values, unlike @cLoN, which imposes a bounded indegree in a self-regulated
manner.

Self healing Finally, it is interesting to see how the two protocols perform at

removing dangling links to dead nodes. We repeated the catastrophic &ilure

periment presented in Secti@, this time for NEWSCAST. In that experiment,

we abruptly killed half of the nodes of an already converged overlaypaserved

how long it takes the remaining nodes to “forget” the dead ones.
Figure2.13shows the number of dead nodes still remembered and the number

of links to them as a function of the cycles elapsed since the catastrophie failu

CycLON graphs (enhanced swapping) shown in Fig2u@are reproduced here

for comparison. MWSCASTSs priority at keeping thdreshestpointers to neigh-

bors becomes evident by the speed at which dead nodes are forgotten.

The above illustrate the high dependence of protocol behavior on speeifi
sign choices. A comprehensive exploration of the design space, ingl@iin
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CLON and NewscAsTamong others, and its effect on overlay properties follows
in Chapter3.

2.9. AN APPLICATION: AGGREGATION

To illustrate the utilization of @cLON overlays, let us now take a look at an
example gossip-based applicatiokggregation that is, the collective estimation
of system-wide properties, is a key functionality to a number of large-sésde d
tributed systems. Such properties may refer to the network size, averstgens
load, node with the lowest or highest load, aggregate capacity in a disttisiote
age system, etc. Aggregation should be carried out collectively by &itipating
nodes in a purely distributed fashion, and the results should become ko@An
nodes.

Aggregation is not the focus of this dissertation. For more information the
reader is directed to work such &pta et al. 200 [Kempe et al. 200]L[Kempe
et al. 2003, [Renesse et al. 2003 Jelasity et al. 2005 [Jelasity and Montresor
2004, [Montresor et al. 2004and [Kowalczyk and Vlassis 20Q4In this section
we adopt the basic aggregation protocol followed in all aforementionbticad
tions, and we show how it can benefit frony ©@_ ON'’s properties.

We consider a basic aggregation protocol that follows the push-puifgios
based paradigm, appearing ide[asity et al. 2005 Each node is assumed to
have a localestimateof the property being aggregated and a seh@fhbors
At random times, but exactly once evedbytime units, a node picks a random
neighbor and they exchange their estimates. Subsequently, each rtzdesuits
local estimate based on its previous value and the estimate received.

Averagingconstitutes a fundamental aggregation operation, in which each
node is equipped with a numeric value, and the goal is to estimate the average
of all nodes’ values. Jelasity et alldlasity et al. 2005%show how averaging can
be used as the basis for the computation of other aggregates, includargligsd
mean, variance, counting of nodes, sum, and product.

In averaging, a node updates its estimate to the average between its previous
local estimate and the estimate received. That is, when npdes q with esti-
matess, andsq gossip, their estimates are updated as follows:

S
S=%= " er X
Note that the sum of the two nodes’ estimates does not change, Thareftrer
does the global average. The variance, however, over the setrddek’ esti-
mates decreases, unlegsands; were already equal, in which case it remains
unaltered. Experiments and theoretical analysisl@igsity et al. 2005Jelasity
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Figure 2.14: Aggregation in static overlays.

and Montresor 2004Montresor et al. 2004Kowalczyk and Vlassis 20Q4how
that the variance converges to zero. Moreover, it converges aipmmential rate,
whose exponent depends on the communication graph defining the medgs
bors. The rule of thumb is that the higher the link randomization in an overkay, th
faster the aggregation convergence.

Here we evaluate averaging over @ ON and NEwsSCASToverlays, in one
staticand twodynamicsettings. All presented experiments involve 100,000 nodes,
and a view length of 20.

Aggregation over static overlays In our first experiment setting, we applied
averaging over converged, statie © ON and NewscAsToverlays. Bystaticwe
mean that, after an overlay had converged, we ceased gossiping dietl Q-
gregation over its—static—links. FiguB14shows the evolution of the variance
as a function of the aggregation cycléstitne units) elapsed. To have a point of
reference, we also plot the variance evolution for averaging ovdlyechinnected
graph, in which a node exchanges estimates with a node picked randonaf out
the whole network. Fully connected graphs demonstrated the fastesirgence
among all overlays tested id¢lasity et al. 2005

First, we observe that in all cases the variance converges to zerexamen-
tial rate. Second, we record a clear difference between the aggregétwency
of static CrcLON and NewscAsToverlays, the former converging significantly
faster. This is a direct consequence ofdZ ON’s narrow indegree distribution and
very low clustering. Each node has roughly the same number of incoming links
and therefore participates in roughly the same number of estimation exshasge
all other nodes. Moreover, the very low clustering ensures that ezdgisinitial
value is uniformly spread across “all directions” of the network, not ¢peion-
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Figure 2.15: Aggregation in dynamic overlays.

fined to any highly clustered subset. This leads to faster convergenumiet’
estimates to the global average. On the other harmly$cAsTs skewed inde-
gree distribution results in an uneven distribution of estimation exchangessacr
nodes. Also, due to high clustering, local estimates spread quickly withityhigh
clustered communities, but take longer to spread globally.

Aggregation over dynamic overlays Although sufficiently random static topolo-
gies are good enough for aggregation, they are not adequate faméyenviron-
ments. In real world systems, a dynamic overlay management protocolh—suc
as CrcLoON or NEWSCAST— is needed to deal with network changes. Conse-
qguently, in our second experiment we evaluated averaging aymamicover-
lays. More specifically, each node was running an overlay managemaaotpl
(CycLoN or NEwscAST) andthe averaging protocol. Both overlay management
and averaging protocols were running at the same frequency, thatispee ex-
ecuted at a random time (not necessarily together) but exactly oncedetiare
units. The node to exchange averaging estimates with, was picked randaimly o
of the overlay management protocol’s current view.

Figure2.15presents the variance evolution for €LON, NEWSCAST, and a
fully connected graph of 100,000 nodes. Clearly, both protocols parbetter
compared to their static counterparts. The gain is larger favBICAST, as its dy-
namic execution significantly increases “randomness” in nodes’ viewsLGN,
whose static views already resembled regular random graph edgss)atagain
as much, nevertheless it still outperformsWSCAST.

In further experiments (not shown here) we observed that when tgagv
management protocol ruasterthan the averaging one, even more randomness
is introduced in both protocols, gradually approaching the fully conneptaoh
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behavior. In fact, when the overlay management protocol runs atdar of 10
times faster than averaging, both protocols effectively converge likdyacon-
nected graph. The tradeoff for this—better—randomness and fagisggagion
is the higher gossiping frequency for overlay management, resulting inmetre
work traffic.

Aggregation piggybacked on overlay management Our third set of experi-
ments is based on a scheme combining the aggregation algorithm with the over-
lay management protocol. The idea ispiggybackestimation exchanges on the
view exchange messages used for overlay management. The evidefit bEn

this combination is that aggregation comes for free: aggregation messages a
replaced by a few extra bytes in overlay management messages.

In the case of @cLON a more significant—albeit less obvious—benefit ap-
plies. CrcLON has proved to trigger highly even communication among nodes.
That is, in each cycle each node initiates gossimrgctly oncewith a random
node, and is contacted for gossiping by anotheadomnodealmost exactly once
When piggybacked on ¥ LON, aggregation adopts this highdyenandrandom-
izedcommunication pattern, further improving its convergence rate.

On the contrary, piggybacking aggregation oeBMECASThas a negative ef-
fect. In NEwsCAST, two nodes that gossip end up with the same view (see Sec-
tion 2.8.1). If these two nodes also engage in aggregation exchange, the yeggati
effect of clustering is maximized: The two fresh estimates are confined in two
nodes belonging to the exact same cluster, hindering their fast diffusitiatnt
nodes in the network.

The results of the piggybacked setting are shown in Figqui& Note that
averaging piggybacked onv€LON converges as fast as on a fully connected
graph. On the other hand, we can clearly see the negative effectgytyaigking
on NEWSCAST, as explained above.

To sum up our findings, we conclude that€@ oN constitutes a very attrac-
tive overlay management protocol for aggregation, either for static nardic
environments.

Although aggregation is not one of the core applications presented in this dis
sertation, it allowed us briefly illustrate how applications can benefit from C
CLON's particular properties. A number of additional applications basedywn C
CLON are extensively presented and evaluated in Part Il.
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Figure 2.16: Aggregation in piggy-backed version.

2.10. RELATED WORK

There are currently several efforts in constructing unstructuredaysethat
share properties with random graphs. We have already describiedshapping,
introduced in Btavrou et al. 2004 forming the starting point for our own work
described in this chapter.

Another example is the Scamp protocGlgnesh et al. 2003which is explic-
itly designed to construct overlays with evenly distributed links, achieving vie
lengths ofO(logN) without prior knowledge oN. Scamp is reactive, in the sense
that view exchanges take place only when nodes join, leave, or a failde> is
tected. As it turns out, the protocol exhibits similar properties in comparison to
random graphs when considering its capabilities for information dissemination
and recovering from massive node failures. However, no thoronglysis has
been undertaken to compare the communication graph with random graphbs as
did, but it is known that there are important differences. A proactiteresion of
Scamp is suggested iMpssoulie et al. 20Q3improving the protocol’s behavior
with respect to load balancing and resilience to failures in dynamic settings.

In many unstructured overlays, such asdCon, scalability of the network
is achieved by maintaining a partial view on the entire network. The constnuctio
of the network itself, that is, membership management, is crucial as we have ar
gued in this chapter. Itis interesting to see that the assumption is sometimes made
that the communication graph resulting from a specific membership protocol is
random. However, as we will see in Chapsethere is a large family of member-
ship protocols for unstructured overlays for which this assumption is.falses
includes the work on Lightweight Probabilistic Multicagygster et al. 2003b
as well as the BwscAsT protocol Pelasity et al. 2003Voulgaris et al. 200B
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As it turns out, such membership protocols generally lead to small-world graph
which distinguish themselves from random graphs by a high clusterinfjceef.

In contrast, @CLON overlays appear to fall outside the category of small-world
networks.

Of course, random graphs may not be the best structure for communicatio
networks. Alternative schemes are describeddaridurangan et al. 200Baw
and Sui 200B In these cases, the requirements of low diameter, resilience to
massive node failures, and inexpensive membership management leadific sp
graph-construction protocols. We argue that with enhanced swapisg tie-
quirements are all met, and that the resulting communication graphs allow us to
adopt the rigorous analysis of random graphs. Moreover, in candrad®r exam-
ple [Pandurangan et al. 20D3here is no need to use a central server.

In this light, it is also interesting to mention the recent work on Phenix for the
decentralized construction of low-diameter, scale-free netwdNauhaybi and
Campbell 2004 In Phenix, an additional goal is to construct networks that are
resilient to massive malicious attacks. We have not yet examined this feature f
CYCLON, but suspect its good randomness properties will help in also making it
attack resilient.

Finally, it is interesting to discuss Kelip§&[pta et al. 20083 [Linga et al],
a DHT based on gossiping. Kelips imposes a fixed structure on a netwdtk of
nodes, organizing them YN groups ofy/N nodes each. Each node maintains
a complete view of its groupd(v/N)links), and at least one link to each other
group O(v/N) links). Routing is, therefore, performed at constant time, namely
in two steps: in the first step a message is routed to the appropriate groug, in th
second it reaches the target node within that group. Gossiping is appspdetad
membership information within and across groups. Old links are discarced ba
on their age.

The main philosophy behind Kelips is trading per-node memory requirements
for constant time lookups. Indeed, increased memory requirements PG&EiN
ous constraints on contemporary memory-abundant computer systemesvétpw
another facet of this design decision has been overlooked. The krgew is,
the harder it becomes to keep it up-to-date in the face of node churneandriz
changes, leading to incomplete or inaccurate views. Itis therefore umdhesher
the constant time lookup premise of Kelips is maintained when the scale of the
system increases and membership becomes highly dynamic. Howevernthe co
cept of discarding links solely based on their age, rather than due talefjored,
fixed view length (as in €cLON), seems highly promising and deserves further
research. It can lead to the design of a family of gossiping protocols lafhw
Kelips is an instance), different than the protocols dealt with in this dissertatio
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2.11. CONCLUSIONS AND FUTURE WORK

In this chapter we presentedr€CLON, a complete framework for inexpensive
membership management in very large P2P overlaysLON is highly scalable,
very robust, and completely decentralized. Most important is that the regultin
communication graphs share important properties with random graphgleBes
the fact that desirable features such as low diameter and robustnsspposted,
this similarity justifiably opens the possibility to rigorously analyze the networks.

We also conclude that YTLON is an improvement of the basic swapping
protocol developed by Stavrou et ebtavrou et al. 2004 We offer a scalable and
inexpensive membership protocol, achieve better node-degree distngudiod
significantly lower the pollution of views concerning stale references taique
members.

In addition to our continued pursuit for new applications ofcCoN, we will
also explore potential improvements of the protocol itself. An important riegt s
in our research will be the replacement of the periodic view exchangesawith
reactive exchange protocol, as in Scarafpesh et al. 2003 We envisage that
this replacement will lead to a better utilization of network resources, and incu
only minimal costs for detecting failed nodes. Another important subject that w
will address is taking network proximity into account. The latter will be largely
based on our scalable latency estimation service, describé&kimianiak et al.
2004.



CHAPTER 3

Random Overlays: Exploring the
Design Space

This chapter is a paper under submission (extendinfg[asity et al. 2004p:
Mark Jelasity, Spyros Voulgaris, Anne-Marie Kermarrec, Rachid Guaoui,
Maarten van Steen

“Gossip-based Peer Sampling”

Gossip-based communication protocols are appealing in large-scale déstribu
applications such as information dissemination, aggregation, and overdgdyp
management. In this chapter we factor out a fundamental mechanism attte he
of all these protocols: theEER SAMPLING SERVICE. In short, this service pro-
vides every node with peers to gossip with. We promote this service at thHe leve
of a first class abstraction of a large-scale distributed system, pretty meca lik
name service is a first class abstraction of a local-area system. We tpaegen
neric framework to implement agBBR SAMPLING SERVICE in a decentralized
manner by constructing and maintainidgnamic unstructuredverlays through
gossiping membership information itself. Our framework generalizes exigting a
proaches and makes it easy to discover new ones. We use this franteveonk
pirically explore and compare several implementations of tRERPSAMPLING
SERVICE including existing gossiping approaches. Through extensive simulation
experiments we show that—although all protocols provide a good qualityramifo
random stream of peers to each node locally—traditional theoreticahasisms
about the randomness of the unstructured overlays as a whole doldadn lamy
of the instances. We also show that different design decisions reselenesdif-
ferences from the point of view of two crucial aspects: load balanambfault
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tolerance. Our simulations are validated through a real implementation over a
wide-area cluster.

3.1. INTRODUCTION

Gossip-based protocols, also called epidemic protocols, are appealirggin la
scale distributed applications. The popularity of these protocols stems feaim th
ability to reliably pass information among a large set of interconnected nexiss,
if the nodes regularly join and leave the system (either purposefully occouat
of failures), and the underlying network suffers from broken or dioks.

The common interaction pattern underlying gossip-based protocols cansists
each node in the system periodically exchanging information with a sub#st of
peers. The choice of this subset is crucial to the wide dissemination of dsggo
Ideally, any given node should exchange information with peers thatedeeted
following a uniform random sample @fl nodescurrently in the systenjemers
et al. 1987 van Renesse et al. 199Birman et al. 1999Karp et al. 2000 Sun
and Sturman 20QKowalczyk and Vlassis 2004 This assumption has led to
rigorously establish many desirable features of gossip-based prolideatsala-
bility, reliability, and efficiency (see, e.gP[ttel 1987 in the case of information
dissemination, ordempe et al. 2003Jelasity et al. 2005or aggregation).

In practice, enforcing this assumption would require to develop applications
where each node may be assumed to know of every other node in the §Bétem
man et al. 1999Gupta et al. 2002Kermarrec et al. 2003 However, providing
each node with a complete membership table from which a random sample can
be drawn, is unrealistic in a large-scale dynamic system, for maintaining such
tables in the presence of joining and leaving nodes (referred ¢thas) incurs
considerable synchronization costs. In particular, measurement studik@sious
peer-to-peer networks indicate that an individual node may often beected in
the order of only a few minutes to an hour (see, eBfpdgwan et al. 2003 aroiu
et al. 2003 Sen and Wang 200¢

Clearly, decentralized schemes to maintain membership information are cru-
cial to the deployment of gossip-based protocols. This chapter factbrhe
abstraction of a PER SAMPLING SERVICE and presents a generic, yet simple,
gossip-based framework to implement it.

The FEER SAMPLING SERVICE is singled out from the application using
it and, abstractly speaking, the same service can be used in diffeténgse
information disseminationdemers et al. 1987Eugster et al. 2004 aggrega-
tion [Kempe et al. 2003Jelasity et al. 20022004k Montresor et al. 2004 load
balancing Jelasity et al. 2004cmembership managemengdulgaris et al. 200p
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and overlay bootstrappinglé¢lasity et al. 2006Voulgaris and van Steen 2003
The service is promoted as a first class abstraction of a large-scalewdetritys-
tem. In a sense, it plays the role of a naming service in a traditional LANteden
distributed system as it provides each node with other nodes to interact with.

The basic general principle underlying the framework we propose to imple-
ment the BER SAMPLING SERVICE is itself based on a gossip paradigm. In
short, every node (1) maintains a relatively small local membership tablertihat p
vides apartial view on the complete set of nodes and (2) periodically refreshes
the table using a gossiping procedure. The framework is generic arfsbaased
to instantiate knownHugster et al. 2003hJelasity et al. 2003Voulgaris et al.
2009 and novel gossip-based membership implementations. In fact, our frame-
work captures many possible variants of gossip-based membership diasemin
These variants mainly differ in the way the membership table is updated atra give
peer after gossiping with communicating peers. We use this framework to-expe
imentally evaluate various implementations and identify key design parameters
in practical settings. Our experimentation covers both extensive simulatiohs a
emulations on a wide-area cluster.

We consider many dimensions when identifying qualitative differences be-
tween the variants we examine. These dimensions include the randomness of
selecting a peer as perceived by a single node, the accuracy of teatomem-
bership view, the distribution of the load incurred on each node, as wélieas
robustness in the presence of failures and churn.

As it turns out, we find that two peers should exchange elements fromeheir r
spective tables. In other words, communication should be bidirectionakrixdh
to a push-only or pull-only approach can easily lead to (irrecoveralleitipn-
ing of the set of nodes. Another finding is that robustness against faitidgs or
churn can be easily accomplished if old table entries are dropped whieareing
membership information.

However, as we shall also see, no single implementation outperforms the oth-
ers along all dimensions. In this study we identify these tradeoffs whectisgje
an implementation of the#EER SAMPLING SERVICE for a given application. For
example, to achieve good load balancing, table entries should ratlserapped
between two peers. However, this strategy is less robust against$aiudechurn
than non-swapping ones.

3.2. THE PEER SAMPLING SERVICE

The FEER SAMPLING SERVICE is implemented over a set of nodes that form
the domain of the gossip-based protocols that make use of the serviceafiee
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sampling service can be utilized by multiple gossip protocols simultaneously, pro-
vided they have a common target group. The task of the service is to pravide
participating node of a gossiping application with a subset of peers frogrotg

to send gossip messages to.

3.2.1. API

The API of the EER SAMPLING SERVICE simply consists of two methodsni t
andget Peer . It would be technically straightforward to provide a framework
for a multiple-application interface and architecture. For a better focusiamd
plicity of notations we assume however that there is only one application. The
specification of these methods is as follows.

i nit() Initializes the service on a given node if this has not been done before.
The actual initialization procedure is implementation dependent.

get Peer () Returns a peer address if the group contains more than one node.
The returned address is a sample drawn from the group. ldeally, thisesamp
should be an independent unbiased random sample. The exacttetiarac
tics of this sample (e.qg., its randomness or correlation in time and with other
peers) is affected by the implementation.

The focus of the research presented in this chapter is to give accu@ataation
about the behavior of thget Peer method in the case of a class of gossip-based
implementations. Applications requiring more than one peer call this method re-
peatedly.

Note that we do not define st op method. The reason is to ease the bur-
den on applications by propagating the responsibility of automatically removing
nonactive nodes to the service layer.

3.2.2. Generic Protocol Description

We consider a set of nodes connected in a network. A node has asadhdat is
needed for sending a message to that node. Each node maintains a mgmbersh
table representing its (partial) knowledge of the global membership. Traaliion
if this knowledge is complete, the table is called thew. However, in our case
each node knows only a limited subset of the system, so the table is contequen
called apartial view. The partial view is a list of node descriptorsParametef
is called theview lengthand is the same for all nodes.

A node descriptor contains a network address (such as an IP gdainelsan
agethat represents the freshness of the given node descriptor. Tl peaw
is a list data structure, and accordingly, the usual list operations areededn it.
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do forever
receive buffeg from p
if pull then
/[ 0 is the initial age
buffer — ((MyAddress,0))
view.permute()
move oldest H items to end of view

do forever
wait(T time units)
p < view.selectPeer()

if pushthen _
/I 0is the initial age buffer.append(view.head))
buffer — ((MyAddress,0)) send buffer tep

view.select(,H,S,buffep)

view.permute
p 0 view.increaseAge()

move oldest H items to end of view
buffer.append(view.heati@)) (b) passive thread
send buffer tgp

else// empty view to trigger response  method view.select(,H,S,buffef)

send (null) top view.append(buffey)
if pull then view.removeDuplicates()
receive buffeg from p view.removeOlditems( min(H,view.sizg-)
view.select(,H,S,buffep) view.removeHead( min(S,view.siZg)
view.increaseAge() view.removeAtRandom(view.sizg-
(a) active thread (c) method view.seledt(H,S,buffep)

Figure 3.1: The skeleton of a gossip-based implementation of HeR BAM -
PLING SERVICE.

Most importantly, this means that the order of elements in the view is not changed
unless some specific method (for exammper mut e, which randomly reorders

the list elements) explicitly changes it. The protocol also ensures that thate is
most one descriptor for the same address in every view.

The purpose of the gossiping algorithm, executed periodically on ead nod
and resulting in two peers exchanging their membership information, is to make
sure that the partial views contain descriptors of a continuously changiagpm
subset of the nodes and (in the presence of failure and joining and deawites)
to make sure the partial views reflect the dynamics of the system. We assume
that each node executes the same protocol of which the skeleton is shBign in
ure 3.1 The protocol consists of two threads: an active (client) thread initiating
communication with other nodes, and a passive (server) thread waitirepéor
answering these requests.

We now describe the behavior of the active thread. The passive fuistaulir-
rors the same steps. The active thread gets activated inTeticte units exactly
once. Three globally known system-wide parameters are used in this atgorith
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parameterd (the partial view length on each nodé¢),andS. For the sake of
clarity, we leave the details of the meaning and impadt @ndS until the end of
this section.

First, a peer node is selected to exchange membership information with. This
selection is implemented by the metheel ect Peer that returns the address of
alive node. This method is a parameter of the generic protocol. We discuss the
implementations ofel ect Peer in Section3.2.3

Subsequently, if the information has to be pushed (boolean parametér
is true), then a buffer is initialized with a fresh descriptor of the node rgnhnin
the thread. Thery,/2 elements are appended to the buffer. The implementation
ensures that these elements are selected randomly from the view withlagerep
ment, ignoring the oldest elements (as defined by the age stored in the descrip-
tors). If there are not enough elements in the view, then the ditlements are
also sampled to fill in any remaining slots. In addition, the view will have exactly
the selected elements as first items (i.e., in the list head). This fact will be impor-
tant later. Parametét is guaranteed to be less than or equal zB. The buffer
created this way is sent to the selected peer.

If areply is expected (boolean paramaget | is true) then the received buffer
is passed to methoslel ect (¢, H, S, buf f er), which creates the new view
based on the listed parameters, and the current view, making sure thé gieze o
new view does not decrease and is at nfost

Finally, methodsel ect (4, H, S, buf f er) creates the new view based on
the listed parameters, and the current view as follows: After appendingethe
ceived buffer to the view, it keeps only the freshest entry for eacinesd. After
this operation, there is at most one descriptor for each address. Abihis fine
size of the view is guaranteed to be at least the original size, since in the orig
nal view each address was included also at most once. Subsequenthgttice
performs a number of removal steps to decrease the size of the viewTte
parameters to the removal methods are calculated in such a way that the @ew siz
never decreases undeér First, the oldest items are removed, as defined by their
age, and parametet. The named comes fromhealing that is, this parameter de-
fines how aggressive the protocol should be when it comes to removirggthiak
potentially point to faulty nodes (dead links). Note, that in this way self-hgalin
is implemented without actually checking if a node is alive or not. If a node is
not alive, then its descriptors will never get refreshed (and thusrbeaid), and
therefore sooner or later get removed. The lakgés, the sooner older items will
be removed from views.

After removing the oldest items, tt&first items are removed from the view.

Recall that it is exactly these items that were sent to the peer previously. As
a result, parametes controls the priority that is given to the addresses received
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from the peer. ISis high, then the received items will have a higher probability to
be included in the new view. Since the same algorithm is run on the receieer sid
this mechanism in fact controls the number of items thatsarappedbetween
the two peers, hence the nar8dor the parameter. This parameter controls the
diversity of the union of the two new views (on the passive and active.siti&
is low then both parties will keep many of their exchanged elements, efflgctive
increasing the similarity between the two respective views. As a result, more
unique addresses will be removed from the system. In contraStsihigh, then
the number of unique addresses that are lost from both views is lowerlash
step removes random items to reduce the size of the vidw to

This framework captures the essential behavior of many existing gossip mem-
bership protocols (although exact matches often require small chardgesiich,
the framework serves two purposes: (1) we can use it to compare ahttva
wide range of different gossip membership protocols by changing péeaned-
ues, and (2) it can serve as a unifying implementation for a large classtotpts.
As a next step, we will explore the design space of our framework, farfia
basis for an extensive protocol comparison.

3.2.3. Design Space

In this section we describe a set of specific instances of our genetmcptdy
specifying the values of the key parameters. These instances will beadafty
the rest of the chapter.

Peer Selection As described before, peer selection is implementesidiyect -
Peer () that returns the address oflime node as found in the caller's current
view. In this study, we consider the followimmger selectiomolicies:

rand Uniform randomly select an available node from the view
tail Select the node with thi@ighestage

Note that the third logical possibility of selecting the node with ltheestage is

not included since this choice is not relevant. It is immediately clear from simply
considering the protocol scheme that node descriptors with a low agetoefe
neighbors that have a view that is strongly correlated with the node’s @w v
More specifically, the node descriptor with the lowest age always refacly to

the last neighbor the node communicated with. As a result, contacting this node
offers little possibility to update the view with unknown entries, so the resulting
overlay will be very static. Our preliminary experiments fully confirm this simple
reasoning. Since the goal of peer sampling is to provide uncorrelatedman
peers continuously, it makes no sense to consider any policies with a besltow
low age, and thus protocols that follow such a policy.
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View propagation Once a peer has been chosen, the peers may exchange infor-
mation in various ways. We consider the following twiew propagatiorpolicies:

push The node sends descriptors to the selected peer
pushpull | The node and selected peer exchange descriptors

Like in the case of the view selection policies, one logical possibility: pthk
strategy, is omitted. It is easy to see that the pull strategy cannot possibiger
satisfactory service. The most important flaw of the pull strategy is thata no
cannot inject information about itself, except only when explicitly askeciy
other node. This means that if a node loses all its incoming connections (which
might happen spontaneously even without any failures, and which is @he

mon as we shall see) there is no possibility to reconnect to the network.

View selection The parameters that determine how view selection is performed
areH, the self-healing parameter, asdthe swap parameter. Let us first note
some properties of these parameters. First, assuming tisagven, all values
of H for which H > ¢/2 are equivalent té1 = ¢/2, because the protocol never
decreases the view size underFor the same reason, all values®for which
S> ¢/2—H are equivalent t&=¢/2—H. Furthermore, the last, random removal
step of the view selection algorithm is executed onig ¢/2— H. Keeping this

in mind, we have a “triangle” of protocols witH ranging from 0 to¢/2, and
with Sranging from 0 to//2 —H. In our analysis we will look at this triangle at
different resolutions, depending on the scenarios in question. As a minimem,
will consider the three vertices of the triangle defined as follows.

blind H=0,S=0 Select blindly a random subset
healer H=1¢/2 Select the freshest entries
swapper | H=0,S=/¢/2 Minimize loss of information

3.2.4. Implementation

We now describe a possible implementation of trEER SAMPLING SERVICE
API based on the framework presented in Sec8dh2 We assume that the ser-
vice forms a layer between the application and the unstructured overlagniketw

Initialization  Thei ni t method will cause the service to register itself with the
gossiping protocol instance that maintains the overlay network. From dfivat, p
the service will be notified by this instance whenever the actual view is uphdate



SEC. 3.3 LocAL RANDOMNESS 53

Sampling As an answer to thget Peer call, the service returns an element
from thecurrentview. To maximize the diversity of the returned peers, the service
makes a best effort not to return the same element twice during the perited wh
the given element is in the view: this would introduce an obvious bias and would
damage randomness. To achieve this, the service maintains a queue oftgelemen
that are currently in the view but have not been returned yet. MajleddPeer
returns the first element from the queue and subsequently it removeetnisr

from the queue. When the service receives a notification on a view ygtate
removes those elements from the queue that are no longer in the curnent vie
and appends the new elements that were not included in the previous fvibw. |
gueue becomes empty, the service falls back on returning random sanoptes f
the current view. In this case the service can set a warning flag thdtecesnd

by applications to indicate that the quality of the returned samples is no longer
reliable.

In the following sections, we analyze the behavior of our framework iermord
to gradually come to various optimal settings of the parameters. Anticipating our
discussion in Sectiof.7, we will show that there are some parameter values that
never lead to good results (such as selecting a peer from a fresh escigtbr).
However, we will also show that no single combination of parameter values is
always best and that, instead, tradeoffs need to be made.

3.3. LOCAL RANDOMNESS

Ideally, a FEER SAMPLING SERVICE should return a series of unbiased in-
dependent random samples from the current group of peers. Shmpgon of
such randomness has indeed led to rigorously establish many desirdibie$e=H
gossip-based protocols like scalability, reliability, and efficierieytél 1987.

When evaluating the quality of a particular implementation of the service, one
faces the methodological problem of characterizing randomness. Iretttisrs
we consider a fixed node and analyze the series of samples genertiatetr-
ticular node.

There are essentially two ways of capturing randomness. The firsiagpis
based on the notion of Kolmogorov complexityi pnd Vitanyi 1997. Roughly
speaking, this approach considers as random any series that barnoohpressed.
Pseudo random number generators are automatically excluded by thigatefin
since any generator, along with a random seed, is a compressecrepties of a
series of any length. Sometimes it can be proven that a sEdse compressed,
but in the general case, the approach is not practical to test randscuneo the
difficulty of proving that a seriesannotbe compressed.
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The second, more practical approach assumes that a series is raralom if
statistic computed over the series matches the theoretical value of the same statis-
tic under the assumption of randomness. The theoretical value is computed in th
framework of probability theory. This approach is essentially empiricalabse
it can never be mathematically proven that a given series is random. ligect,
pseudo random number generators pass most of the randomness tdsotia
to this category.

Following the statistical approach, we view thee®R SAMPLING SERVICE (as
seen by a fixed node) as a random number generator, and we appanibdra-
ditional methodology that is used for testing random number generatortestVe
our implementations with the “diehard battery of randomness tebtaidaglia
1993, the de factostandard in the field.

3.3.1. Experimental Settings

We have experimented our protocols using the PeerSim simukR¢er$in All
the simulation results were obtained using this implementation.

Thedi ehar d test suite requires as input a considerable number of 32-bit in-
tegers: the most expensive test needs® of them. To be able to generate this
input, we assume that all nodes in the network are numbered fronNO iode
N executes the BER SAMPLING SERVICE, obtaining one number between 0 and
N — 1 each time it calls the service, thereby generating a sequence of intégers.
N is of the formN = 2" + 1, then the bits of the generated numbers form an unbi-
ased random bit stream, provided theeR SAMPLING SERVICE returns random
samples.

Due to the enormous cost of producing a large number of samples, we re-
stricted the set of implementations of the view construction procedure to ttee thre
extreme pointsbl i nd, heal er andswapper . Peer selection was fixed to be
tai | andpushpul | was fixed as the communication model. Furthermore, the
network size was fixed to be'®+ 1 = 1025, and the view length was= 20.
These settings allowed us to completel@’ cycles for all the three protocol im-
plementations. In each case, nddlgenerated four samples in each cycle, thereby
generating four 10-bit numbers. Ignoring two bits out of these ten, wwergéed
one 32-bit integer for each cycle.

Experiments convey the following facts. No matter which two bits are ignored,
it does not affect the results, so we consider this as a non-criticaliolecidote
that we could have generated 40 bits per cycle as well. However, singetesis
in thedi ehar d suit do respect the 32-bit boundaries of the integers, we did not
want to artificially diminish any potential periodic behavior in terms of the cycles.
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3.3.2. Test Results

A detailed description of the tests in tdeehar d benchmark is out of the scope

of this dissertation. In Tabld.1we summarize the basic ideas behind each class
of tests. In general, the three random number sequences pass alltshentes
cluding the most difficult onedMarsaglia and Tsang 20Q2vith one exception.
Before discussing the one exception in more detail, note that for two test&lwe d
not have enough 32-bit integers, yet we could still apply them. The fuss ¢s

the permutation test, which is concerned with the frequencies of the possible o
derings of 5-tuples of subsequent random numbers. The test re§uli@ 32-bit
integers. However, we applied the test using the original 10-bit integarsned

by the sampling service, and the random sequences passed. The isetsat
ordering is not sensitive to the actual range of the values, as long aanpe is

not extremely small. The second case is the so called “gorilla” test, which is a
strong instance of the class of the monkey testargaglia and Tsang 20D2It
requires 67- 107 32-bit integers. In this case we concatenated the output of the
three protocols and executed the test on this sequence, with a positilte Tée
intuitive reasoning behind this approach is that if any of the protocolsusesia
non-random pattern, then the entire sequence is supposed to fail tespestially
given that this test is claimed to be extremely difficult to pass.

Consider now the test that proved to be difficult to pass. This test was an
instance of the class of binary matrix rank tests. In this instance, we take-6 co
secutive 32-bit integers, and select the same (consecutive) 8 bite&omof the
6 integers forming a & 8 binary matrix whose rank is determined. That rank can
be from 0 to 6. Ranks are found for 100,000 random matrices, and sqahie
test is performed on counts for ranks smaller or equal to 4, and fos aakd 6.

When the selected byte coincides with the byte contributed by one call to the
PEER SAMPLING SERVICE (bits 0-7, 8-15, etc), protocold i nd andswapper
fail the test. To better see why, consider the basic functioning of the rahkite
most of the cases, the rank of the matrix is 5 or 6. If it is 5, it typically means that
the same 8-bit entry is copied twice into the matrix. Our implementation of the
PEER SAMPLING SERVICE explicitly ensures that the diversity of the returned
elements is maximized in the short run (see SecBdh4. As a consequence,
rank 6 occurs relatively more often than in the case of a true randoneisegju
Note that for many applications this property is actually an advantage. Howev
heal er passes the test. The reason of this will become clearer in the remaining
parts of this chapter. As we will see, in the caséhefil er the view of a node
changes faster and therefore the queue of the samples to be retunreepiently
flushed, so the diversity-maximizing effect is less significant.

The picture changes if we consider only every 4th sample in the random se-
qguence generated by the protocols. In that cabénd andswapper pass the
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Birthday Spacings

The k-bit random numbers are interpreted as “birthda
in a “year” of X days. We taken birthdays and list the
spacings between the consecutive birthdays. The statig
the number of values that occur more than once in that

Greatest Common

Divisor

We run Euclid’s algorithm on consecutive pairs of rand
integers. The number of steps Euclid’s algorithm need
find the greatest common divisor (GCD) of these conse
tive integers in the random series, and the GCD itself
the statistics used to test randomness.

Permutation

Tests the frequencies of the 5!120 possible orderings g
consecutive integers in the random stream.

Binary Matrix Rank

Tests the rank of binary matrices built from consecutive
tegers, interpreted as bit vectors.

Monkey

ys”
\
ticis
list.
om
s to
BCU-
are

=

in-

A set of tests for verifying the frequency of the occurrences

of “words” interpreting the random series as the output

Df a

monkey typing on a typewriter. The random number series

is interpreted as a bit stream. The “letters” that form
words are given by consecutive groups of bits (i.e., fg
bits there are 4 letters, etc).

Count the 1-s

A set of tests for verifying the number of 1-s in the b

stream.

Parking Lot

Numbers define locations for “cars.” We continuou

the
r2

it

Sly

“park cars” and test the number of successful and unsuc-

cessful attempts to place a car at the next location def
by the random stream. An attempt is unsuccessful if

location is already occupied (the two cars would overlap).

Minimum Distance

Integers are mapped to two or three dimensional cog
nates and the minimal distance among thousands of
secutive points is used as a statistic.

Squeeze

After mapping the random integers to the interiall), we

ined
the

rdi-

con-

test how many consecutive values have to be multiplied to
get a value smaller than a given threshold. This number is

used as a statistic.

Overlapping Sums

The sum of 100 consecutive values is used as a statistic.

Runs Up and Down

The frequencies of the lengths of monotonously decreasing

or increasing sequences are tested.

Craps

200,000 games of craps are played and the number of

throws and wins are counted. The random integers
mapped to the integers.1.,6 to model the dice.

Table 3.1: Summary of the basic idea behind the classes of testsdin #tear d
test suite for random number generators. In all cases tests are runewdials
parameter settings. For a complete description we refévigmgaglia 199h

are
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test, butheal er fails. In this case, the reason of the failurehefal er is exactly
the opposite: there are relatively too many repetitions in the sequenceg tayn
every 8th sample, all protocols pass the test.

Finally, note that even in the case of “failures,” the numeric deviation from
random behavior is rather small. The expected occurrences of raris, & and
6 are 0.94%, 21.74% and 77.31%, respectively. In the first type of éqilunen
there are too many occurrences of rank 6, a typical failed test givesitages
0.88%, 21.36% and 77.68%. When ranks are too small, a typical failureris, fo
example, 1.05%, 21.89% and 77.06%.

3.3.3. Conclusions

The results of the randomness tests suggest that the stream of nodesd &ty
the REER SAMPLING SERVICE is close to random for all the protocol instances
examined. Given that some widely used pseudo random number geadadtat
least some of these tests, this is a highly encouraging result regardingality q
of the randomness provided by this class of sampling protocols.

Based on these experiments, we cannot, however, conclude on giodahn-
ness of the resulting graphs. Local randomness, evaluated front's jpeiat of
view is important, however, in a complex large-scale distributed system, where
the stream of random nodes returned by the nodes might have complicated c
lations, merely looking at local behavior does not reveal some key diegistics
such as load balancing (existence of bottlenecks) and fault toleramc&ed-
tion 3.4we present a detailed analysis of the global properties of our protocols.

3.4. GLOBAL RANDOMNESS

In Section3.3we have seen that from a local point of view all implementations
produce good quality random samples. However, statistical tests fapmarass
and independence tend to hide importsintictural properties of the systems a
whole To capture these global correlations, in this section we switch to a graph
theoretical framework. To translate the problem into a graph theoreticpidge,
we consider theommunication topologgr overlay topologydefined by the set of
nodes and their views (recall thget Peer () returns samples from the view).
In this framework the directed edges of the communication graph are defined
follows. If nodea stores the descriptor of nodén its view then there is a directed
edge(a,b) from ato b. In the language of graphs, the question is how similar
this overlay topology is to a random graph in which the descriptors in eagh vie
represent a uniform independent random sample of the whole node set.

In this section we consider graph-theoretic properties of the overlahgra
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An important example of such properties is thegree distributionThe indegree
of nodei is defined as the number of nodes that hiaivetheir views. The outde-
gree is constant and equal to the view gizB®egree distribution has many signif-
icant effects. Most importantly, degree distribution determines whethes trer
hot spots and bottlenecks from the point of view of communication costshér o
words,load balancingis determined by the degree distribution. It also has a di-
rect relationship with reliability to different patterns of node failuratbprt et al.
2004, and has an effect on the exact way epidemics are spRastdr-Satorras
and Vespignani 20Q1 Apart from the degree distribution we also analyze the
clustering coefficient and average path length, as described and nmaiiv&ec-
tion 3.4.2

The main goal of the work presented in this chapter is to explore the different
design choices in the protocol space described in Se8tth& More specifically,
we want to assess the impact of the peer selection, view selection, andreigw p
agation parameters. Accordingly, we chose to fix the network si2¢ 010"
and the maximal view size tb= 30. The results presented in this section were
obtained using the PeerSim simulation environmeweigrSirn

3.4.1. Properties of Degree Distribution

The first and most fundamental question is whether, for a particularqmioio-
plementation, the communication graph has some stable properties, which it main-
tains during the execution of the protocol. In other words, we are interasthe
convergence behaviaf the protocols. We can expect several sorts of dynamics
which include chaotic behavior, oscillations, and convergence. Inafasmver-
gence the resulting state may or may not depend on the initial configuratioa of th
system. In the case of overlay networks we obviously prefer to haweeogence
towards a state that is independent of the initial configuration. This psofer
calledself-organization In our case it is essential that in a wide range of scenar-
ios the protocol instances should automatically produce consistent atidtpbde
behavior. SectioB.4.1examines this question.

A related question is whether there is convergence and what kind of commun
cation graph a protocol instance converges to. In particular, as meshtbamker,
we are interested in what sense overlay topologies deviate from cenaioma
graph models. We discuss this issue in Seciighl

Finally, we are interested in looking &ical dynamicproperties along with
globally stabledegree distributions. That is, it is possible that while the overall
degree distribution and its global properties such as maximum, variancagaye
etc., do not change, the degree of the individual nodes does. Thisferadnle
because in this case even if there are always bottlenecks in the netwetigtth
tleneck will not be the same node all the time which greatly increases robsistnes
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and improves load balancing. Secti®d.1lis concerned with these questions.

Convergence

We now present experimental results that illustrate the convergencerpesyof
the protocols in three different bootstrapping scenarios:

Growing In this scenario, the overlay network initially contains only one node.
At the beginning of each cycle, 500 new nodes are added to the network
until the maximal size is reached in cycle 20. The view of these nodes is
initialized with only a single node descriptor, which belongs to the oldest,
initial node. This scenario is the most pessimistic one for bootstrapping the
overlays. It would be straightforward to improve it by using more contact
nodes, which can come from a fixed list or which can be obtained using
inexpensive local random walks on the existing overlay. However, in ou
discussion we intentionally avoid such optimizations to allow a better focus
on the core protocols and their differences.

Lattice In this scenario, the initial topology of the overlay is a ring lattice, a
structured topology. We build the ring lattice as follows. The nodes are
first connected into a ring in which each node has a descriptor in its view
that belongs to its two neighbors in the ring. Subsequently, for each node,
additional descriptors of the nearest nodes are added in the ring until the
view is filled.

Random In this scenario the initial topology is defined as a random graph, in
which the views of the nodes were initialized by a uniform random sample
of the peer nodes.

As we focus on the dynamic properties of the protocols, we did not wish to
average out interesting patterns, so in all cases the result of a sindggeshown in
the plots. Nevertheless, we ran all the scenarios 100 times to gain data ¢a-the s
bility of the protocols with respect to the connectivity of the overlay. Cotiiéc
is a crucial feature, a minimal requirement for all applications. The redithese
runs show that in all scenarios, every protocol under examinatiotesreacon-
nected overlay network in 100% of the runs (as observed in cycle 30@)only
exceptions were detected during the growing overlay scenario. Babkhows
the push protocols. With the push-pull scheme we have not obsenittbparg.

The push versions of the protocols perform very poorly in the growigg s
nario in general. Figurd.2illustrates the evolution of the maximal indegree. The
maximal indegree belongs to the central contact node that is used to bopdtistra
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protocol partitioned | average number| average largest
runs of clusters cluster

(rand,healer,push) 100% 22.28 9124.48
(rand,swapper,push) 0% n.a. n.a.

(rand,blind,push) 18% 2.06 9851.11

(tail,healer,push) 29% 2.17 9945.21

(tail,swapper,push) 97% 4.07 9808.04

(tail,blind,push) 10% 2.00 9936.20

Table 3.2: Partitioning of the push protocols in the growing overlay scernasta
corresponds to cycle 300. Cluster statistics are over the partitionedmiyns o

10000
9000
8000 push protocols —
7000
6000
5000
4000
3000
2000
1000

maximal indegree

_— pushpull protocols

0 50 100 150 200 250 300
cycles

Figure 3.2: Evolution of maximal indegree in the growing scenario (recatl tha
growing stops in cycle 20). The runs of the following protocols are shqeer
selection is either rand or tail, view selection is blind, healer or swapperiand
propagation is push or pushpull.

network. After growing is finished in cycle 20, the push-pull protocols alnio
stantly balance the degree distribution thereby removing the bottleneck.ughe p
versions, however, get stuck in this unbalanced state.

This is not surprising, because when a new node joins the network sndrge
initial contact node to start with, the only way it can get an updated view isiEso
other node contacts it actively. This, however, is very unlikely. Bezallshew
nodes have the same contact, the view at the contact node gets updateteixir
frequently causing all the joining nodes to be quickly forgotten. A nodetdas
push its own descriptor many times until some other node actually contacts it.
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Figure 3.3: Evolution of standard deviation of indegree in all scenaripastipull
protocols.

This also means that if the network topology moves towards the shape of a star
then the push protocols have extreme difficulty balancing this degree-digirib
state again towards a random one.

We conclude that this lack of adaptivity and robustness effectively renders
push-only protocols useles#n the remaining of this chapter we therefore con-
sider only the pushpull model.

Figure3.3illustrates to convergence of the push-pull protocols. Note that the
average indegree is always the view sfzéNe can observe that in all scenarios
the protocols quickly converge to the same value, even in the case of thimgro
scenario, in which the initial degree distribution is rather skewed. Otheepties
not directly related to degree distribution also show convergence, assdestin
Section3.4.2

Static Properties

In this section we examine the converged degree distributions generatezidify
ferent protocols. Figur8.4shows the converged standard deviation of the degree
distribution. We observe that increasing béthand S results in a lower—and
therefore more desirable—standard deviation. The reason is diffienetitese

two cases. With a larg8, links to a node come to existence only in a very con-
trolled way. Essentially, the only way new links to a node are created is by the
node itself injecting its own fresh node descriptor during communication. On the
other hand, with a largkl, the situation is the opposite. When a node injects a
new descriptor about itself, this descriptor is (exponentially often) capiether
nodes for a few cycles. However, one or two cycles later all copieseaneved
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Figure 3.4: Converged values of indegree standard deviation.
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Figure 3.5: Converged indegree distributions on linear and logarithmicsscale

because they are pushed out by new links (i.e., descriptors) injected rimetdre-
time. So the effect that reduces variance is the short lifetime of the copies of
given link.

Figure 3.5 shows the entire degree distribution for the three vertices of the
design space triangle. We observe that the distributicsmafpper is narrower
than that of the random graph, whité i nd has a rather heavy tail and also a
large number of nodes with zero or very few nodes pointing to them, whiabtis n
desirable from the point of view of load balancing.

Dynamic Properties

Although the distribution itself does not change over time during the continu-
ous execution of the protocols, the behavior of a single node still needs to b



proportion (%)

SEC. 3.4 G_.oBAL RANDOMNESS 63

rand, blind rand, swapper rand, healer
3 T T L T 12 T T T T T T T 5 T T T T T T T T
one node over time O L]
slapshot of network = 45 1
25 — 10 D‘?‘-. — al |
1 = st * o | . ssf &% i
s g s ,ols % ]
4 € &t ~I | 1 2 o5} X .
2 " 2 | O i
3] ot & 2 2 o
- s 4r " T 2 45| = ol -
§ . LR i
- 2+ "] 8] -
[ ]
5 0.5 [ B
= 0 0
0 40 80 120 160 200 10 15 20 25 30 35 40 45 50 0 10 20 30 40 50 60 70 80 90
indegree indegree indegree

Figure 3.6: Comparison of the converged indegree distribution over therieat

a fixed time point and the indegree distribution of a fixed node during an aiterv
of 50,000 cycles. The vertical axis represents the proportion of renttksycles,
respectively.

determined. More specifically, we are interested in whether a given figdd n
has a variable indegree or whether the degree changes very slowdylaftér
case would be undesirable because an unlucky node having aberegr@degree
would continuously receive above-average traffic while others wadelive less,
which results in inefficient load balancing.

Figure3.6compares the degree distribution of a node over time, and the entire
network at a fixed time point. The figure shows only the distribution for onenod
and only the random peer selection protocols, but the same result holdsl fo
peer selection and for all the 100 other nodes we have observed. theofact
that these two distributions are very similar, we can conclude that all nokies ta
all possible values at some point in time, which indicates that the degree déa no
is not static.

However, it is still interesting to characteribew quicklythe degree changes,
and whether this change is predictable or random. To this end, we peagent
correlation data of the degree time-series of fixed nodes in FigiareThe band
indicates a 99% confidence interval assuming the data is random. Only dee no
is shown, but all the 100 nodes we traced show very similar behaviortheet
seriesdy, ...dk denote the indegree of a fixed node in consecutive cyclesgand
the average of this series. The autocorrelation of the sdries. dx for a given
time lagk is defined as

. 5 1(dj — d)(djx—d)
¥ q(dj—d)? 7
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Figure 3.7: Autocorrelation of indegree of a fixed node over 50,00@sy€onfi-
dence band corresponds to the randomness assumption: a rand@pisEtiees
correlations within this band with 99% probability.

which expresses the correlation of pairs of degree values sepayakearybtles.

We observe that in the caseludal er itis impossible to make any prediction
for a degree of a node 20 cycles later, knowing the current degreeevér, for
the rest of the protocols, the degree changes much slower, resultingétation
in the distance of 80-100 cycles, which is not optimal from the point of view o
load balancing.

3.4.2. Clustering and Path Lengths

Degree distribution is an important property of random graphs. Howehexe are
other equally important characteristics of networks that are indepentidagree
distribution. In this section we consider tagerage path lengthnd theclustering
coefficientas two such characteristics. The clustering coefficient is defined over
undirected graphs (see below). Therefore, we consider the utedireersion of

the overlay after removing the orientation of the edges.

Average path length The shortest path length between nadmdb is the min-

imal number of edges required to traverse in the graph in order to te&om

a. The average path length is the average of shortest path lengths opairall

of nodes in the graph. The motivation of looking at this property is that, in any
information dissemination scenario, the shortest path length defines a lowred b

on the time and costs of reaching a peer. For the sake of scalability a small av-
erage path length is essential. In FigBt8, especially in the growing and lattice
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Figure 3.8: Evolution of the average path length and the clustering coeffioie
all scenarios.

scenarios, we verify that the path length converges rapidly. Figu@shows the
converged values of path length for the design space triangle defindcabgS.
We observe that all protocols result in a very low path length. L&galues are
the closest to the random graph.

Clustering coefficient The clustering coefficient of a nodeis defined as the
number of edges between the neighbora divided by the number of all possible
edges between those neighbors. Intuitively, this coefficient indicatesxtbat to
which the neighbors ad are also neighbors of each other. The clustering coeffi-
cient of a graph is the average of the clustering coefficients of its naddslways

lies between 0 and 1. For a complete graph, itis 1, for a tree it is 0. The motiva
tion for analyzing this property is that a high clustering coefficient hasyietly
damaging effects on both information dissemination (by increasing the number
of redundant messages) and also on the self-healing capacity by nirggiiee
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Figure 3.9: Converged values of clustering coefficient and averaitegngth.

connection of a cluster to the rest of the graph thereby increasing thalplioy
of partitioning. Furthermore, it provides an interesting possibility to dravalpar
lels with research on complex networks where clustering is an importamtroése
topic (i.e., in social networks)Yatts and Strogatz 1998

Like average path length, the clustering coefficient also convergesge
ure 3.8); Figure3.9shows the converged values. It is clear that clustering is con-
trolled mainly byH. The largest values ¢ result in rather significant clustering,
where the deviation from the random graph is large. The reason is tHatsif
large, then a large part of the views of any two communicating nodes wilt over
lap right after communication, since both keep the same freshest entrietheFo
largest values of, clustering is close to random. This is not surprising either
becauses controls exactly the diversity of views.

3.5. FAULT TOLERANCE

In large-scale, dynamic, wide-area distributed systems it is essential that a
protocol is capable of maintaining an acceptable quality of service undétea w
range of severe failure scenarios. In this section we present simulatahis on
two classes of such scenari@sttastrophic failure where a significant portion of
the system fails at the same time (e.g., due to network partitioning), and heavy
churn, where nodes join and leave the system continuously.

3.5.1. Catastrophic Failure

Failures on network backbones typically split a network in two or more disjoint
partitions of different geographic locations (e.g., nodes in Europe addsin
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Figure 3.10: The number of nodes that do not belong to the largest ciedne
cluster. The average of 100 experiments is shown. The random ghayoista
completely overlaps with the swapper protocols.

America), or administrative jurisdictions (e.g., nodes in IlSRnd nodes in ISP

Y). Note that, from the point of view of each partition, partitioning appears as
if a large number of nodes (i.e., the ones belonging to a disjoint partition) died
altogether.

In this section we test thedER SAMPLING SERVICE against partitioning fail-
ures. In fact, we focus on a single partition, and examine how it emerggs af
partitioning has occurred. This is modeled by a catastrophic failure. Mefs
cally, since our protocols are completely symmetric with respect to node losation
partitioning is modeled as the removal ofemmdomsubset of the nodes at once.

As in the case of the degree distribution, the response of the protocols to a
massive failure has a static and a dynamic aspect. In the static setting we are
interested in the self-healing capacity of the converged overlays to an{jadiie
massive) node failure, as a function of the number of failing nodes. Riagav
large number of nodes will inevitably cause some serious structural ek@mthe
overlay even if it otherwise remains connected. In the dynamic case wd ik
to learn to what extent the protocols can repair the overlay after a sgaarage.

The effect of a massive node failure on connectivity is shown in Figut@

In this setting the overlay in cycle 300 of the random initialization scenario was
used as converged topology. From this topology, random nodes wereved

and the connectivity of the remaining nodes was analyzed. In all of the<100
6 = 600 experiments performed we did not observe partitioning until removing
67% of the nodes. The figure depicts the number of the nodes outsidegbstlar
connected cluster. We observe consistent partitioning behavior overoaticol
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Figure 3.11: Removing dead links following the failure of 50% of the nodes in
cycle 300.

instances (withbswapper being particularly close to the random graph): even
when partitioning occurs, most of the nodes form a single large connelcistér.
Note that this phenomenon is well known for traditional random graljdbs/man
2002.

In the dynamic scenario we made 50% of the nodes fail in cycle 300 of the
random initialization scenario and we then continued running the protocofeon
damaged overlay. The damage is expressed by the fact that, on averihgéthe
view of each node consists of descriptors that belong to nodes that émager
in the network. We call these descriptors dead links. Fi@uté shows how fast
the protocols repair the overlay, that is, remove dead links from the vigased
on the static node failure experiment it was expected that the remaining 50% of
the overlay is not partitioned and indeed, we did not observe partitioning with
any of the protocols. Self-healing performance is fully controlled by tledimg
parameteH, with H = 15 resulting in fully repairing the network in as little as 5
cycles (not shown).

3.5.2. Churn

To examine the effect of churn, we define an artificial scenario in whigiven
proportion of the nodes crash and are subsequently replaced by ousg in
each cycle. This scenario isveorst casescenario because the new nodes are
assumed to join the system for the first time, therefore they have no information
whatsoever about the system (their view is initially empty) and the crashex$nod
are assumed never to join the system again, so the links pointing to them will
never become valid again. A more realistic trace-based scenario is alstnexa

in Section3.5.3using the Gnutella trace described 8gfoiu et al. 2003
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We focus on two aspects: the churn rate, and the bootstrapping methath Ch
rate defines the number of nodes that are replaced by new nodes ityebhNe
considerrealistic churn rates (1% and 1%) and aatastrophicchurn rate (30%).
Since churn is defined in terms of cycles, in order to validate how realistie thes
settings are, we need to define the cycle length. With the very consersattirgy
of 10 seconds, which results in a very low load at each node, the traceukd
in [Saroiu et al. 200Bcorresponds to 2% churn in each cycle. In this light, we
consider 1% a comfortable upper bound of realistic churn, given alsthinaycle
length can easily be decreased as well to deal with even higher levelarof ch

We examine two bootstrapping methods. Both are rather unrealistic, but our
goal here is not to suggest an optimal bootstrapping implementation, but-to ana
lyze our protocols under churn. The following two methods are suitabléhfer
purpose because they represent two opposite ends of the design spac

Central We assume that there exists a server that is known by every joining node,
and that is stable: it is never removed due to churn or other failures. This
server participates in the gossip membership protocol as an ordinary node
The new nodes use the server as their first contact. In other words, the
view is initialized to contain the server.

Random An oracle gives each new node a random live peer from the network as
its first contact.

Realistic implementations could use a combination of these two approaches, wher
one or more servers serve random contact peers, usinge#RIAMPLING SER-

VICE itself. Any such implementation can reasonably be expected to result in a
behavior in between the two extremes described above.

Simulation experiments were run initializing the network with random links
and subsequently running the protocols under the given amount af ahtit the
observed properties reach a stable level (300 cycles). The exp¢ainmesults
reveal that for realistic churn rates.186 and 1%) all the protocols are robust to
the bootstrapping method and the properties of the overlay are very clises®
without churn. Figure3.12illustrates this by showing the standard deviation of
the node degrees in both scenarios, for the higher churn rate 1%.rv@like
close correspondence with Figugel The clustering coefficient and average path
length show the same robustness to bootstrapping, and the observes ataue
almost identical to the case without churn (not shown).

Let us now consider the damage churn causes in the networks. Fitkstfof a
all protocols and scenarios the networks remain connected, eveh=$ad. Still,

a (low) number of dead links remain in the overlay. FigBrE3shows the average
number of dead links in the views, again, only for the higher churn raté.(t%
clear that the extent of the damage is fully controlled by the healing parakheter
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Figure 3.12: Standard deviation of node degree with churn rate 1%. tamtee
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Figure 3.13: Average number of dead links in a view with churn rate 1%. The
H = 0 case is not shown; it results in more than 11 dead links per view on &/erag
for all settings.
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Furthermore, it is clear that the protocols are robust to the bootstrapgengiso
also in this case. IH > 1 then themaximal(not average) number of dead links
in any view for the different protocol instances ranges fromB in the case of
churn rate 1% and from-25 for churn rate (L%, where the lowest value belongs
to the highesH. If H = 0 then the number of dead links radically increases:
it is at least 11 on average, and the maximal number of dead links ranges fro
20-25 for the different settings. That is, in the presence of churn,essential

for any implementation to set at ledst= 1. We have already seen this effect in
Section3.5.1concerning self-healing performance.

Although the server participates in the overlay, the plots showing resules und
the central bootstrapping scenario were calculated ignoring the sekeganise its
properties sharply differ from the rest of the network. In particuldnag a high
indegree, because all new nodes will have a fresh link to the sengethahlink
will stay in the view of joining nodes for a few more cycles, possibly replicated
in the meantime. Indeed, we observe that for 1% churn, 32%8% of the nodes
have a link to the server at any time, dependingdcemdS. However, if we assume
that the server can handle the traffic generated by joining nodes, a kighrae
is non-critical. The expected number of incoming messages due to indggree
is d/¢ (where/ is the view length), with a very low variance. This means that
the generated traffic is of the same order of magnitude as the traffic ¢eshérsa
the joining nodes. We note again however, that we do not consider this gimplis
server-based solution a practical approach; we treat it only as &eass scenario
to help us evaluate the protocols.

So far we have been discussing realistic churn rates. However, it isaef a
demic interest to examine the behavior unebremelydifficult scenarios, where
the network suffers a catastrophic damageach cycle The catastrophic churn
rate of 30% combines the effects of catastrophic failure (see Segtiof) and
churn.

Unlike with realistic churn rates, in this case the bootstrapping method has
a strong effect on the performance of the protocols and therefoimmeecthe
major design decision, although the paramek¢rand S still have a very strong
effect as well. Consequently, we need to analyze the interaction of tle#pgos
membership protocol and the bootstrapping method. In the case of the-serve
based solution, the overlay evolves into a ring-like structure, with a fewaito
links. The reason is that the view of the server is predominantly filled with entrie
of the newly joined nodes, since each time a new node contacts the seiger it a
places a fresh entry about itself in the view of the server. These enteésgved
to the subsequently joining nodes, thus forming a linear structure. Thidiking-
structure is rather robust: it remains connected (even after removingithers
for all protocols withH >= 8. However, it has a slightly higher diameter than



size of largest connected cluster

72 RANDOM OVERLAYS: EXPLORING THEDESIGN SPACE CHAP. 3

10000 T 20
9000 - 18
8000 |- S 16
7000 - é 14
6000 % 12
5000 °

4000 , § 10
3000 /g g 8
2000 // 4 > 6

1000 and peer selection —8— | © 4 rand peer selection —8—

B tail peer selection ---M--- tail peer selection ---®---

0 1 1 1 1 1 2 1 1 1 1 1

0 2 4 6 8 100 12 14 0 2 4 6 8 10 12 14

H H

Figure 3.14: Size of largest connected cluster and degree stand#tiaeunder
catastrophic churn rate (30%), with the random bootstrapping methodiduodi
curves belong to different values 8but the measures depend onlytdnso we do
not need to differentiate between them. Connectivity and node degrdefared
over theundirectedversion of the subgraph dif’e nodes.

that of the random graph (approximately 20-30 hops). ltexl er the average
number of dead links per view is still as low as 10 and 9 for random and t&il pe
selection, respectively.

The random scenario is rather different. In particular, we lose cdiniigc
for all the protocols, however, for large valuestbfthe largest connected cluster
almost reaches the size of the network (see Fi@uitd). Besides, the structure
of the overlay is also different. As Figu®14shows, tail peer selection results
in a slightly more unbalanced degree distribution (note that the low deviation for
low values ofH is due to the low number of live nodes). The reason is that—also
considering that tail peer selection picks the oldiestnode—the nodes that stay
in the overlay for somewhat longer will receive more incoming traffic bseau
(due to the very high number of dead links in each view) they tend to be thstolde
live node in most views they are in. Fbeal er the average number of dead
links per view is 11 and 9 for random and tail peer selection, respectively

To summarize our findings: under realistic churn rates all the protocols per
form very similarly to the case when there is no churn at all, independently of
the bootstrapping method. Besides, some of the protocol instances, irupartic
lar, heal er, can tolerate even catastrophic churn rates with a reasonable perfor-
mance with both bootstrapping methods.
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3.5.3. Trace-driven Churn Simulations

In Section3.5.2we analyzed our protocols under artificial churn scenarios. Here,
we consider a realistic churn scenario using the, so cdifeime measurements

on Gnutella, carried out by Saroiu et 8ldroiu et al. 200@8 These traces contain—
among other information—the connection and disconnection times for a total of
17,125 nodes over a period of 60 hours. Throughout the trace, tinberuof
connected nodes remains practically unchanged, in the ordef oiob@s.

We noticed a periodic pattern occurring every 404 seconds in the trates.
each 404-second interval, all connections and disconnections taleajpiacg the
first 344 seconds, rendering the network static during the last 60 decdhese
recurring gaps would represent a positive bias for our churn simustamthey
periodically provide the overlay with some “breathing space” to procesmnte
changes. However, these gaps are not realistic and are most pralpadtiifact
of the logging mechanism. Therefore, we decided to eliminate them by linearly
expanding each 344 second interval to cover the whole 404 secoruds. th¥t
this transformation leaves the node uptimes practically unaltered.

We have taken the following two decisions with respect to the parameters in
the experiments presented. First, peer selection is fixed to random. Sgé&ian
showed that random is outperformed by tail peer selection in all casesefore,
random is a suitable choice for this section as the worst case peer sefagioyn
Second, the swapping paramettis fixed to 0. Sectio3.5.2showed thaB=0
results in the highest (therefore worst) degree deviation, while it doeaffet
the number of dead links.

We apply two join methods: central and random, as defined in Seg8toh
The only difference is that a reconnecting node still remembers the links-it pr
viously had, some of which may be dead at reconnection time. This facilitates
reconnection, but generally increases the total number of dead links.

The cycle length was chosen to be 1 minute. We anticipate that in reality the
cycle length will be shorter, resulting in lower churn per cycle. The chofca
cycle length close to the upper end of realistic values is intentional, and is aimed
at testing this specific gossip membership protocol under increased stress

Figure3.15shows the node connections and disconnections as a percentage of
the current network size. Connections are shown as positive poingseaddis-
connections as negative. Although we ran the experiments for the whode e
focus on its most interesting part, namely cycles 2250 to 2750. Notice thatlat ¢
2367, around 450 nodes get disconnected at once and recohogettzer 27 min-
utes later, at cycle 2394, probably due to a router failure. Similar tempetauy
shorter—group disconnections are observed later on, around &4&Hs 2550,
and 2650, respectively.

Let us now examine the way the overlay is affected by those network ekang
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Figure 3.15: Churn in the Saroiu traces. Full time span of 3600 one minutscyc
and zoomed in to cycles 2250 to 2750.
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Figure 3.16: Average number of dead links per view, based on the Sanoitella
traces. All experiments use random peer selectionsad.

Figure 3.16 shows that the number of dead links is always kept at fairly small
levels, especially whehl is at least 1. As expected, the number of dead links
peaks when there are massive node disconnections and get backtd goickly.
However, it is not affected by the observed massive node reconngchecause
these happen shortly after the respective disconnections, and théomsigi the
reconnected nodes are still alive.

Two observations regarding the effecttéfcan be made. First, higher values
of H result in fewer dead links per view, validating the analysis in Se@iér2
Second, higher values bf trigger thefasterelimination of dead links. The peaks
caused by massive node disconnections are wider forHowalues, becoming
sharper a#d grows higher. In fact, these two observations are related to each
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Figure 3.17: Evolution of standard deviation of node degree based @atioau
Gnutella traces. All experiments use random peer selectioisana.

other: in a persistently dynamic network, the converged average nurhtead
links depends on the rate at which the protocol disposes of them.

Figure3.17 shows the evolution of the node degree deviation. It can be ob-
served that foH > 1 the degree deviation under churn is very close to the corre-
sponding converged values in a static network (see Figdye ForH = 0 though,
the higher number of pending dead links affects the degree distribution Mote
that both massive node disconnectiamsl connections disturb the degree devia-
tion, but in both cases a few cycles are sufficient to recover the origiralay
properties.

To recap our analysis, we have shown that even with a pessimistic cycth leng
of 1 minute, all protocols foH > 1 perform very similarly to the case of a stable
network, independently of the join method. Anomalies caused by massiee nod
connections or disconnections are repaired quickly.

3.6. WIDE-AREA-NETWORK EMULATION

Distributed protocols often exhibit unexpected behavior when deployeein
real world, that cannot always be captured by simulation. Typically, thitiés
to unexpected message loss, network and scheduling delay, as wethas k-
ing place in unpredictable, arbitrary order. In order to validate the coress
of our simulation results, we implemented our gossip membership protocols and
deployed them on a wide-area network.

We utilized the DAS-2 wide-area cluster as our testli@d|$-2]. The DAS-2
cluster consists of 200 dual-processor nodes spread across 5 shiesNether-
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lands. A total of 50 nodes were used for our emulations, 10 from eachEsitsh
node was running a Java Virtual Machine emulating 200 peers, giving laofota
10,000 peers. Peers were running in separate threads.

Although 200 peers were running on each physical machine, communication
within a machine accounted for only 2% of the total communication. Local-
area and wide-area traffic accounted for 18% and 80% of the totabatbasy.
Clearly, most messages are transferred through wide area connedlimesthat
the intra-cluster and inter-cluster round-trip delays on the DAS-2 are iortters
of 0.15 and 2.5 milliseconds, respectively. In all emulations, the cycle lenggh w
set to 5 seconds.

In order to validate our simulation results, we repeated the experiments pre-
sented in Figure8.3 and 3.8 of Section3.4, using our real implementation. A
centralized coordinator was used to initialize the node views according to the
bootstrapping scenarios presented in Secdignl, namelygrowing, lattice, and
random

The first run of the emulations produced graphs practically indistinguishab
from the corresponding simulation graphs. Acknowledging the low rdtipd-
delay on the DAS-2, we ran the experiments again, this time inducing a 50 msec
delay in each message delivery, accounting for a round-trip delayGofs@c on
top of the actual one. The results presented in this section are all baseesen
experiments.

Figure3.18 shows the evolution of the in-degree standard deviation, cluster-
ing coefficient, and average path length for all experiments, using the Szates
as Figures3.3 and 3.8 to facilitate comparison. The very close match between
simulation-based and real-world experiments for all three nodes of thgndes
space triangle allows us to claim that our simulations represent a valid approx
imation of real-world behavior.

The small differences of the converged values with respect to the simwdation
are due to the induced round-trip delay. In a realistic environment, viehaages
are not atomic: they can be intercepted by other view exchanges. Fardesta
node having initiated a view exchange and waiting for the correspondpig re
may in the meantime receive a view exchange request by a third node. eipwev
the view updates performed by the active and passive thread of a nedmia
commutative. The presented results correspond to an implementation where we
simply ignored this problem: all requests are served immediately regardliges of
state of the serving node. This solution is extremely simple from a design goint o
view but may lead to corrupted views.

As an alternative, we devised and implemented three approaches to awoid co
rupted views. In the first approach, a node’s passive thdeapls incoming re-
guestswhile its active thread is waiting for a reply. In the second one, the node
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gueues—instead of dropping—incoming requests until the awaited reply comes.
As a third approach, a node’s passive thread serves all incomingsisgibut its
active threadirops a replhyif an incoming request intervened.

Apart from the added complexity that these solutions impose on our design,
their benefit turned out to be difficult or impossible to notice. Moreovededn
sirable situations may arise in the case of the first two: dropping or delaying a
request from a third node may cause that node to drop or delay, in agquests
it receives itself. Chains of dependencies are formed this way, whithereler
parts of the network inactive for some periods. Given the questionabéantate
these approaches can offer, and considering the design overlegachfiose, we
will not consider them further. Based on our experiments, the bestgjristeim-
ply ignoring the problem, which further underlines the exceptional rolegstof
gossip-based design.

3.7. DISCUSSION

In this section we summarize and interpret the results presented so far. As
stated in the introductory section, we were interested in determining the proper
ties of various gossip membership protocols, in particular their randommioess,
balancing and fault-tolerance. In a sense, after we discussed in theetiisin
why certain results were observed, we discuss here what the results imply

3.7.1. Randomness

We have studied randomness from two points of view: local and globalalLoc
randomness is based on the analogy between a pseudo random-nundrataye
and the BER SAMPLING SERVICE as seen by a fixed node. We have seen that all
protocols return a random sequence of peers at all nodes with a gpouokana-
tion.

We have shown, however, that there are important correlations betWeen
samples returned at the different nodes, that is, the overlay graghbeheple-
mentations are based upon are not random. Adopting a graph-theopeti@alp,
we have been able to identify important deviations from randomness thdif-are
ferent for the several instances of our framework.

In short, randomness is approached best by the view selection nwtlapd
per (H = 0,S= 15), irrespectively of the peer selection method. In general,
increasingH increases the clustering coefficient. The average path length is close
to the one of a random graph for all protocols we examined. Finally, svip-
per the degree distribution has a smaller variance than that of the random graph
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This property can often be considered “better than random” (i.e., frompdird
of view of load balancing).

Clearly, the randomness required by a given application depends oerthe v
nature of that application. For example, the upper bound of the speeddaifing
all nodes via flooding a network depends exclusively on the diameter ofethe
work, while other aspects such as degree distribution or clusteringaegffare
irrelevant for this specific question. Likewise, if the sampling service id byea
node to draw samples to calculate a local statistical estimate of some global prop-
erty such as network size or the availability of some resources, what dedee
is that the local samples are uniformly distributed. However, iidasrequired
that the samples are independent at different nodes, that is, we deetbglobal
randomness at all; the unstructured overlay can have any degreeutiistrjli-
ameter, clustering, etc.

Load Balancing

We consider the service to provide good load balancing if the nodes estealg

the cost of maintaining the service and the cost induced by the applicatioa of th
service. Both are related to the degree distribution: if many nodes poinettedrc
node, this node will receive more sampling-service related gossip mesaade
most applications will induce more overhead on this node, resulting in podr loa
balancing. Since the unstructured overlays that implement the samplingeservic
are dynamic, it is also important to note that nodes with a high indegree become
a bottleneck only if they keep having a high indegree for a long time. In other
words, a node is in fact allowed to have a high indegree temporarily, fbod s
time period.

We have seen that thel i nd view selection is inferior to the other alter-
natives. The degree distribution has a high variance (that is, theredes that
have a large indegree) and on top of that, the degree distribution is rglatiggc,
compared to the alternatives.

Clearly, the best choice to achieve good load balancing iswegper view
selection, which results in an even lower variance of indegree than in tfogran
random graph. In general, the param&és strongly correlated with the variance
of indegree: increasingfor a fixedH decreases the variance. The degree distri-
bution is almost as static as in the cas@eél er , if H = 0. However, this is not
a problem because the distribution has low variance.

Finally, heal er also performs reasonably. Although the variance is some-
what higher than that gdwapper , it is still much lower tharbl i nd. Besides,
the degree distribution is highly dynamic, which means that the somewhat higher
variance of the degree distribution does not result in bottlenecks betzisde-
gree of the nodes change quickly. In general, increaldirigr a fixed value ofS
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also decreases the variance.

Fault Tolerance

We have studied both catastrophic and realistic scenarios. In the firgbogte
catastrophic failure and catastrophic churn was analyzed. In thesersse the
most important parameter turned out tole it is always best to sdil as high

as possible. One exception is the experiment with the removal of 50% of the
nodes, wherswapper performs slightly better. Howeveswapper is slow in
removing dead links, so if failure can be expected, it is highly advisabletto se
H>1.

In the case of realistic scenarios, such as the realistic (artificial) chtes, ra
and the trace-based simulations, we have seen that the damaging effedtialmin
and (as long akl > 1) the performance of the protocols is very similar to the case
when there is no failure.

3.8. RELATED WORK

3.8.1. Membership Management Protocols

Most gossip protocols for implementing peer sampling are covered byamefr
work: we mentioned these in Secti@2.2 One notable exception i¢\[lavena

et al. 200%that we address here in a bit more detail. The protocol is as follows. In
each cycle, all nodes pull the full partial views frdhrandomly selected peers. In
addition, they record the addresses of the peers initiating incoming puksesju
during the given cycle. The old view is then discarded and a new view iBsrgen
ated from scratch. In the most practical version, the new view is gedrgtiérst
adding the addresses of the incoming requests and subsequently fillirggpthoé r
the view with random samples from the union of the previously puHedews
without replacement.

Note the two features that are incompatible with our framework: the applica-
tion of F > 1 (in our casd= = 1) and the asymmetry between push and pull, with
pull having a larger emphasis: only one entry—the initiator peer's own-efify
pushed. Note that it is common to allow fBr> 1 also in other proposals (e.g.,
[Eugster et al. 2003} In our framework, information exchange is symmetric, or
fully asymmetric, without a finer tuning possibility.

To compare this protocol with our framework, we implemented it and ran sim-
ulations using the scenarios presented in this chapter. The view size atle
size were the same as in all simulations, &avas 1, 2 or 3. The main con-
clusions are summarized below. The protocol class presentédlavg¢na et al.
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2009 has some difficulty dealing with the scenarios when the initial network is
not random (the growing and lattice initializations, see Se@idnl). ForF =1

we consistently observed partitioning in the lattice scenario (which was ageerw
never observed in our framework). For the growing scenario, theguots occa-
sionally get stuck in a local attractor where there is a star subgraph:eawitida
very high indegree, and a large number of nodes with zero indegret andut-
degree. Apart from these issues, if we consider self-healing, ldaddag and
convergence properties, the protocols roughly behave as if they insences

in our framework using pushpull, with€ H < 1 andS= 0, with increasing~
tending toward$d = 1. Sincl e we have concluded that the “interesting” proto-
cols in our space have either a highor a highS value, based on the empirical
evidence accumulated so far there is no urgent need to extend our foakntew
allow for F > 1 or asymmetric information exchange. However, studying these
design choices in more detail is an interesting topic for future research.

With respect to membership management, not all proposed systems are gossip
based. It is worth noting Moshd&gidar et al. 200, a distributed membership
management system that is based on a set of devoted servers. Eathegien
ters the multicast group(s) it is interested in with one of several dedicateglse
preferably one in the same local-area network. Each server maintains temple
knowledge of the membership information for the whole network. Membership
changes are reported to servers through a third-party notificatioics@nonitor-
ing the system. Upon a membership change, servers talk to each otherho reac
a consensus regarding the current state of membership. Once thelnstalmi¢
lizes and a consensus is reached, servers propagate to each clieoimlete
membership information of the groups it is subscribed for.

Moshe is designed for systems where the full view of multicast groups is re-
quired by all group members. It focuses on lowering the bandwidth used f
reaching an agreement among the servers, and for updating clients’ Viethat
respect, it is based on the assumption of a small, generally stable netwenie wh
membership changes occur occasionally. It has been successfully oestd
nodes distributed across different continents. However, it is not elbather its
design would be suitable for internet-scale applications, for two readéinst,
in internet-scale applications continuous membership change is the normeand th
network never comes to a stable state. Second, full view of group menybbysh
all nodes is practically infeasible for groups expanding to thousands or msillio
of nodes.

In the following we summarize a number of other fields that are related to the
research presented in this chapter.
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3.8.2. Complex Networks

The assumption of uniform randomness has only fairly recently beconjecsub
to discussion when considering large complex networks such as thedihkpdr
structure of the WWW, or the complex topology of the Internet. Like socidl an
biological networks, the structures of the WWW and the Internet both falheawy
quite unbalanced power-law degree distribution, which deviates stramghythat
of traditional random graphs. These new insights pose several itingrédseoret-
ical and practical problem®pratasi 2002. Several dynamic complex networks
have also been studied and models have been suggested for explaiaimnph
ena related to what we have described in this chamierdgovtsev and Mendes
2003. This related work suggests an interesting line of future theoreticahrelse
seeking to explain our experimental results in a rigorous mannetr.

An interesting direction of graph theory research concexmander graphs
A graph consisting oN vertices is g3—expanderif, for any subset of vertices
S such thatS < N/2, the number of links from nodes @&to the rest of the
nodes is at leaft x |S. Essentially, an expander graph defines a lower limit in
the number of outgoing links fromny subset of the graph nodes, proportional to
the subset size. Expander graphs have a wide spectrum of applic@tdoding
error-correction codes and probabilistically checkable proofs (P@Wsat makes
them attractive for computer networks is the fact that they are rich in shisjdjnt
paths. This allows the establishment of virtual circuits along edge-disjoihs pa
avoiding link congestion.

The expander graphs of practical interest for computer networkiharenes
with bounded node degrees. These graphs have been shown tegpdesiable
properties regarding the existence of disjoint paths. A number of ppEees
studied the relation between the expansion properties of a bound-aegaeder
graph and the number of disjoint paths it can concurrently suppetef and Up-
fal 1987 1989 Broder et al. 1994Kleinberg and Tardos 199%Kleinberg and
Rubinfeld 1996 Broder et al. 19971999. These papers have also suggested
polynomial-time algorithms based on random-walks for the discovery of such
paths, which are out of the scope of this dissertation. This related worghs/h
relevant to our work, as it has been shown that regular random gexphexcel-
lent expandersHrieze and Zhao 1999 The PEER SAMPLING SERVICE could,
therefore, form the basis for building such expander graphs.

3.8.3. Unstructured Overlays

There are a number of protocols that are not gossip-based but thaotan-
tially useful for implementing peer sampling. An example is the Scamp proto-
col [Ganesh et al. 2003While this protocol is reactive and so less dynamic, an
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explicit attempt is made towards the construction of a (static) random graph top
ogy. Randomness has been evaluated in the context of information dissemina
and it appears that reliability properties come close to what one would sae-in r
dom graphs. Finally, some other protocols have also been proposetiéveac
randomnessljaw and Sui 2003Pandurangan et al. 20D&lthough not having
the specific requirements of th& PR SAMPLING SERVICE in mind.

3.8.4. Structured Overlays

A structured overlayRowstron and Druschel 2001Ratnasamy et al. 200;L&to-

ica et al. 2001is by definition not dynamic so to utilize it for implementing the
PEER SAMPLING SERVICE random walks or other additional techniques have to
be applied Zhong et al. 2005King and Saia 2004 Another example of this
approach is a method assuming a tree overkansfic et al. 2003 It is unclear
whether a competitive implementation can be given considering also the cost of
maintaining the respective overlay structure. More generally, structwedays
have also been considered as a basic middleware service to applic&tadek|

et al. 2003. Another issue in common with our own work is that graph-theoretic
approaches have been developed for further analysguinov et al. 200B van-
renesse.tocs.200B¢gnesse et al. 20DBeeds also be mentioned as a hierarchical
(and therefore structured) overlay which although applies (non-umjfgossip to
increase robustness and to achieve self-healing properties, do@genaittempt

to implement or apply a uniformeER SAMPLING SERVICE. It was designed to
support hierarchical information aggregation and dissemination.

3.9. CONCLUDING REMARKS

Gossip protocols have recently generated a lot of interest in the resaare
munity. The overlays that result from these protocols are highly resiliefatilto
ures and high churn rates. The underlying paradigm is clearly appdalimgld
large-scale distributed applications.

This chapter factored out the abstraction implemented by the membership
mechanism underlying gossip protocols: theER SAMPLING SERVICE. The
service provides every peer with (local) knowledge of the rest of Bystich is
key to have the system converge as a whole towards global propeiitigsounsy
local information.

We described a framework to implement a reliable and effici@®RPSAM -
PLING SERVICE. The framework itself is based on gossiping. This framework
is generic enough to be instantiated with most current gossip membership proto
cols[Eugster et al. 2003lelasity et al. 2003Stavrou et al. 2004/oulgaris et al.
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2009. We used this framework to empirically compare the range of protocols
through simulations based on synthetic and realistic traces as well as implemen-
tations. We point out the very fact that these protocols ensure locabnamess

from each peer’s point of view. We also observed that as far as thalghoop-

erties are concerned, the average path length is close to the one in rgrejum

and that clustering properties are controlled by (and grow with) the paeahie

With respect to fault tolerance, we observe a high resilience to high catgand
particularly good self-healing properties, again mostly controlled by trenpeter

H. In addition, these properties mostly remain independent of the bootstgappin
approach chosen.

In general, when designing gossip membership protocols that aim atmando
ness, following a push-only or pull-only approach is not a good chdit&tead,
only the combination results in desirable properties. Likewise, it makes s&nse
build in robustness by purposefully removing old links when exchangingsvie
with a peer. This situation corresponds in our framework to a choici for0.

Regarding other parameter settings, it is much more difficult to come to gen-
eral conclusions. As it turns out, tradeoffs between, for example,dathcing
and fault tolerance will need to be made. When focusing on swapping litkaw
selected peer, the price to pay is lower robustness against node faiharelurn.

On the other hand, making a protocol extremely robust will lead to skewed ind
gree distributions, affecting load balancing.

To conclude, we demonstrated in this extensive study that gossip member-
ship protocols can be tuned to both support high churn rates and prgréadb-
theoretic properties (both local and global) close to those of randonhgsp
as to support a wide range of applications. A complementary researchiatire
would be to explore this spectrum theoretically.



CHAPTER4

From Randomness to Structure:
VICINITY

In the previous chapters we explored gossiping as a means to creabtenreass.
We are now taking a shift and investigate how gossiping can be harresseate
structure.

A crucial issue in nearly all distributed systems is the way nodes interact with
each other. In particular, it is the “network of acquaintances” that ohétes the
flow of communication, and plays a significant role in the overall system’s be-
havior. Unlike some distributed systems, such as theRFSAMPLING SERVICE,
which impose no preference evhichpairs of nodes to link, a number of systems
entail a specific organization of nodes in certain topologies.

Distributed systems that impose a certain organization on nodes include two
main classes. Firsgtructureddistributed systems, where nodes are linked in a
well-defined and deterministic way, according to some property such asiheir
their position, etc. Distributed Hash Tables form a typical example of this.class
The second class involves the groupuoistructuredoverlays that exhibit some
loose form of organization. In these systems, the connectivity of nodestis
strictly mandated, nevertheless certain links are favored over othersxample
of this class are systems that cluster nodes demonstrating some sort ofhséligitio
or similarity, to enhance peer collaboration. In a file-sharing system ftarios,
forming links between nodes of similar interests can dramatically boost the abil-
ity to find requested files. It should be noted that, semantic clustering for the
file-sharing scenario gave us the initial stimulation leading to the conception and
development of the research presented in this chapter, and will berfsttltked
in Chapter7.

A number of customized solutions exist for individual applications. This can
be seen, for instance, in Distributed Hash TabRawWstron and Druschel 2001a
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Zhao et al. 2001Stoica et al. 2001Ratnasamy et al. 200[LaEach of them em-
ploys its own, tailored-made mechanism to build and maintain its specific struc-
ture.

In this chapter we presentgenerictopology construction framework, sulit-
able for the construction of a large set of topologies. Through our freamie
nodes flexibly and efficiently self-organize in a completely autonomousoiash
to a largely arbitrary structure. Such structures may include semantid-base
lays, super-peer topologies, structured overlays such as ringss, BT, or var-
ious other types of topologies. Among the advantages of our approadisar
generic applicability, its flexibility, and its simplicity. Note that some other work
has been proposed along these lines, namely T-Nielagity and Babaoglu 2005
2006 2004, which is further discussed in the related work sectib3)(

4.1. DESIGN PREAMBLE

The problem we are faced with i$°2P topology constructioproblem, namely
the construction of overlays representing relationships between nddedes
demonstrating a strong relationship should be grouped in highly clustemadgo
nities. That is, they should either be directly linked to each other, or bbabée
via a small number of intermediate—also related—nodes. Nodes of composite
interests may form links to multiple communities. In fact, communities’ bound-
aries need not be strict, and the very notion of communities may be a bit fuzzy.
Rather than partitioning the network in well-defined, isolated groups, we &im a
forming a continuous mosaic of interconnected communities. In such anyverla
peers lying within a node’s close vicinity are likely to be related to that node and
among themselves. Such clustering of nodes may be required in the cohtext o
some application, such as the ones presented in Ch&pf&rand8.

However, to handle dynamics requires the discovery and propagatihianfes
that may happemnywherein the network. For this reason, overlay networks
should also reflect desirable properties of random graphs and comgtexrks
in general Albert and Barabsi 2002 Newman 2002 These two conflicting de-
mands generally lead to complexity when integrating solutions into a single pro-
tocol.

Protocols for topology construction in peer-to-peer networks shoyldrage
these concerns. In particular, we advocate that when it comes to drgpnades
in a relationship-based overlay, links between nodes should be optimalewith r
spect to their relationships only, regardless of any other desirablenyoy the
resulting overlay. Instead, a separate protocol should be used ttehaaidiork
dynamics, and provide up-to-date information that will allow proper adjussnen
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in links, and thus leading to adjustments in the overlay network itself.

4.2. THE TOPOLOGY CONSTRUCTION FRAMEWORK

Per our discussion above, we suggest a topology construction frafearo-
posed of two layers. The top layer consists of a gossip-based protacoliTY
that strives to optimize links with respect to the target structure. The bottan lay
comprises the PER SAMPLING SERVICE, studied in ChapteB. It maintains the
overlay connected in the face of node churn and failures, and feedsgHayer
with network changes.

In this section we introduce our model, describe how target topologies are
expressed, and justify the two-layered approach.

4.2.1. Model Outline

We assume a connected network infrastructure, supporting routing dre&vey

two nodes. Each node maintains a dynamic list of neighbors, calleddtisiM Y

view V¢, of fixed small length. Theiew length 4yic, is the same for all nodes.
Knowledge regarding neighbors is stored and exchanged by mearief

descriptors A given node’s descriptor can only be created by that node exclu-

sively. A node descriptor referring to pelris a tuple containing the following

three fields:

1. P’s contact information (i.e., network address and port)
2. A numericagefield
3. P’s application-specifiprofile

Note that a \\CINITY node descriptor is essentially ar€CLON node descriptor
augmented by the node’s application-specific profile. As we will see, a'sod
profile determines its neighbors in the target structure.

The goal is to organize all MINITY views so as to approximate the target
structure as closely as possible. To this end, nodes regularly excinaige
descriptors to gradually evolve their views towards the target. When gogsip
nodes send each other a subset of their views, of fixed small lgagthknown as
thegossip lengthThe gossip length is the same for all nodes.

4.2.2. The Selection Function

We consider aelection function &, P, D), that, given the descriptor of pefr
and a setD of peer descriptors, returns the setkoflescriptors (or all of them,
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if |D| < k) that best approximate’s outgoing links in the target structure. The
selection is based on node profiles. We assume fun&ionbe globally known
by all nodes in the system.

The selection function essentially defines the target structure. EactPpeer
aims at eventually establishing links to the “beé§i; peers, as defined by the
outcome ofS(4yic, P, Dg), whereDf is the set of descriptors of all nodes in the
network excluding?.

Often, the selection functio8 is based on a globally defined peer proximity
metric. ThatisS(k, P, D) sorts all descriptors i with respect to their proximity
to peerP, and selects thieclosest ones. Typical proximity metrics include seman-
tic similarity, ID-based sorting, domain hame proximity, geographic- or latency-
based proximity, etc. Some applications may apply composite proximity metrics,
combining two or more of the above. In certain cases, though, selectimgmpp
ate neighbors involves more than a mere sorting based on some metric, typically
when a peer’s significance as a neighbor depends not only on thHe peeimity
to a given node, but also on whidlther peers are being selected.

We assume that the selection functi®exhibits some sort afransitivity, in

the sense that if nod® is a “good” selection for nodB; (Py S, P,), andPsis a
“good” selection forP, (P, -5, P3), thenP; tendsto be a “good” selection folP;

too (P, N P3). Generally, the “better” a selection noQds for nodeP, the more
likely it is that Q's “good” selections are also “good” fét.

This transitivity is essentially a correlation property between nodes sharing
common neighbors, embodying the principle “my friend’s friend is also mydiien
Surely, this correlation is fuzzy and generally hard to quantify. It is mbeede-
sired property rather than a hard requirement for our topology catigtnuframe-
work. The framework excels for networks exhibiting strong transitivitgwver,
its efficiency degrades as the transitivity becomes weaker. In the exteadiat
no correlation holds between nodes with common neighbors, related ngztes e
tually discover each other through random encounters, although this ke ta
long time.

4.2.3. Design Rationale

From our previous discussion, we are seeking a means to construsactonode
and with respect to the given selection function, the optimal view from alkésod
currently in the system. There are two sides to this construction.

First, based on the assumption of transitivity in the selection fun&iarpeer
should explore the nearby peers that its neighbors have found. Invatihgs, if P,
isinPy's VICINITY view, andPs is in P>’s view, it makes sense to check whether
P; would also be suitable as a neighborRf Exploiting the transitivity inS
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Vicinity
(related nodes)
Peer Sampling
(rardom nades)

Figure 4.1: The two-layered framework

should then quickly lead to high-quality views. The way a node tries to improve
its VICINITY view resemblegill-climbing algorithms. However, instead of trying

to locate a single optimal node, here the objective is to optimize the selection of a
whole set of nodes, namely the view. In that respeet,INMiTY can be thought of

as a distributed, collaborative hill-climbing algorithm.

Second, it is important thaill nodes are examined. The problem with follow-
ing transitivity alone is that a node will be eventually searching only in a single
cluster of related peers, possibly missing out on other clusters of alsedeldut
still unknown—peers, in a way similar to getting locked in a local maximum in
hill-climbing algorithms. Analogously to the special “long” links in small-world
networks Watts 1999 a node needs to establish links outside its neighborhood’s
cluster. Likewise, when new nodes join the network, they should easilyafind
appropriate cluster to join. These issues call for a randomization of cateditbr
including in a view.

In our design we decouple these two aspects by adopting a two-laydred se
of gossip protocols, as can be seen in Figlue The lower layer is the BER
SAMPLING SERVICE, responsible for maintaining a connected overlay and for pe-
riodically feeding the top-layer protocol with nodes uniformly randomly geféc
from the whole network. In its turn, the top-layer protocol, calledt™ITY, is
in charge of discovering peers that are favored by the selection funckach
layer maintains its own, separate view, and communicates to the respective laye
of other nodes, as shown in Figute2
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Peer R Peer P Peer P’
(Random) (related to P)

Vicinity Vicinity gossip Vicinity
(related nodes) (related nodes) (relaednocey
Peer Sampling gossip Peer Sampling Peer Sampling
(ranrdom nodes) (ranrdom nades) (rancdbm nadeg

Figure 4.2: Communication in the two-layered framework. Each layer gossips
the respective layer of other nodes.

4.3. THE ViciINITY PROTOCOL

VICINITY employs periodic gossiping in a way similar too ©L.ON. The key
difference lies in the selection wfichdescriptors to keep in one’s view following
a view exchange. Unlike @ LON, in VICINITY nodes do noswapneighbors
when gossiping. They, insteasendeach other a few descriptors, and each of
them decides independently which ones to keep and which to discard to optimize
its own view. As mentioned in Sectich2.1 the number of descriptors sent is
defined by the gossip lengthic, and is the same for all nodes. The decision on
which links to send is based upon the selection funcBon

Like in CycLON, nodes initiate view exchanges periodically, yet not synchro-
nized. Each nod® initiates gossiping once evefly time units, by executing the
following nine steps:

1. Increase the age of each neighbor by one.

2. Select neighbo® with the highest age among all neighbors, and remove it
from the VICINITY view: Wic = Wic — {Q}.

3. Merge the YCINITY and REER SAMPLING SERVICE Views in one:Vp =
VvicU Vpss-

4. Add own descriptor with own profile and age 0 to the merged viéws=
Ve U{P}.

5. Strip downVp to its gyic best descriptors fo@, by applying the selection
function fromQ’s perspectiveVp = S(gyic, Q, Vp).
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do forever
{ do f
wait (T tinme units) {0 orever
incr. all descriptors’ age by 1 recei ve buf recv fromQ
Penove @ 1rom i ew buf _send + sel ect ToSend()
send buf_send to Q
buf send « sel ect ToSend() - y
- ew « sel ect ToKee
send buf _send to Q ) view P()

receive buf _recv fromQ
vi ew «— sel ect ToKeep()

Active thread Passive thread

Figure 4.3: The generic gossiping skeleton foraCoN and VICINITY .

6. Sendvp to peerQ.

7. Similarly, receive/g from peerQ, containing a set of (up t@ic descriptors
known byQ, optimally selected foP.

8. Merge the VCINITY, PEER SAMPLING SERVICE, and received views in

9. Rebuild the YcINITY view by selecting the bedt;. neighbors fromv:
Wic = S(gvim P7V)

The receiving nod€) executes all steps frofion in a symmetric way. Note that
when merging views (stef®and8), in the presence of multiple descriptors of the
same node only the one with the lowest age is kept.

Each node essentially runs two threads. &ative one, which periodically
wakes up and initiates communication to another peer, executing steps 1hthroug
9. Another thread, passiveone, responds to the communication initiated by
another peer, and executes steps 3 through 9.

Note that the YCINITY protocol can also be modeled by the generic gossiping
skeleton we introduced for YCLON (see Fig.2.2). Figure4.3 reproduces the
same skeleton here for convenience. Figurdists the description of each hook
of the skeleton, for the MINITY protocol.



92 FROM RANDOMNESS TOSTRUCTURE: VICINITY CHAP. 4

Hook Action taken

sel ect Peer () Select descriptor with the oldest age

sel ect ToSend() | Merge the MCINITY and FEER SAMPLING SERVICE
views.

Add own descriptor with own profile and age 0.
Select the besl,ic descriptors foQ.

sel ect ToKeep() | Merge the MCINITY, PEER SAMPLING SERVICE, and
received views.

Select the bedtic descriptors folP.

Figure 4.4: Implementation of the generic gossiping skeleton hooks, for the
VICINITY protocol.

4.4. DISCUSSION ON THE DESIGN CHOICES

A number of interesting design choices are veiled behirtiMTY ’s 9 simple
steps.

To start with, we use th&il peer selectiompolicy, as defined in Sectio®i2.3
That is, nodes always select their neighbor with the highest age to geihip
The motive behind this policy is twofold. First, in a way similar to €. ON, it
serves garbage collection of obsolete node descriptors. A descripgydreaname
obsolete as a result of network dynamics, either because the node itggasie
longer alive, or because new—"better"—neighbors have been disedyvpushing
that descriptor off the list with thé,;c optimal neighbors. Getting back to the
protocol, when—in ste@—nodeP picks neighboQ with the highest age i®'s
view, it alsoremoves Qrom its view. If Q is alive, it generates a new descriptor
with age 0 when executing stef and sends it back tB in step7. At step9,
nodeP reestablishes a fresh link @, if the latter still qualifies as one of the best
lyic neighbors. If not, or ifQ has not responded at all, it simply remains out of
P’s VICINITY view, essentially having been garbage collected. Selecting always
the neighbor with highest age to gossip with, ensures that no obsoletéaeigh
lingers indefinitely in a node’s view.

The second reason for adopting tail peer selection, is that it imposesi@ rou
robin-like screening of a node’s neighbors. After a node’s oldegthiver has
been contacted for gossiping, its new descriptor—if it remains a neighlad+a
has age 0, that is, it has the lowest priority among all neighbors in beingated
for a future gossip exchange. Consequently, a node rotates throwggwitscon-
tacting its neighbors in a roughly circular order. This improves a nodeiscds
to optimize its view faster, by increasing the numbedifferentpotentially good
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neighbors the node encounters. It is not hard to envisage that pralsimgle
neighbor multiple times in a short time frame has little value, as the neighbor is
unlikely to have new useful information to trade every time. In contrast, maxi-
mizing the intervals at which a given neighbor is probed, maximizes the potential
utility of each gossip exchange. Given the rather static nature of a nddeis -

ITY view (contrary to a BER SAMPLING SERVICE view), this is achieved by
visiting neighbors in a round-robin fashion. Our experiments during the linitia
development of VCINITY have shown this effect.

Another point deserving attention is the role of treER SAMPLING SERVICE
layer, and the way it interacts withI®INITY . Its contribution comes about in two
places: In step8 and8, descriptors from the BER SAMPLING SERVICE view are
incorporated as candidates for being sent to the other peer, andrigrdetected
for the node’s updated IZINITY view, respectively.

In essence, theFER SAMPLING SERVICE offers an alternative source of links
to randomly chosen nodes all over the network. These random links@ialc
for target topologies splitting the network in separate, disjoint clusters. en th
converged state of such an overlay, every nodesIMTY links point at nodes
within the same cluster. A new node that happens to be connected in a wrong
cluster (e.g., a newly joined node) would be “trapped” in that cluster uméass
dom links existed to nodes outside that cluster. Even for target topologies th
consist of a single, connected cluster, random links play an importantiien
such a network is converged, each nodels MITY links point at peers close to
its nearby neighborhood. A newly joined node that joins at a random awds
from its neighborhood, will take a large number of steps to slowly “crawl” to its
target position. However, if random links are available, it is very likely tal fin
some suitable long-range links to “fly” him quickly close to its neighborhood.

In the following section we will demonstrate the importance of the random
links provided by the PER SAMPLING SERVICE, both for connected and clus-
tered target topologies.

4.5. OUTLINE OF EVALUATION

In this section we will explain how we evaluate the topology construction
framework, and present the experimental setting.

4.5.1. Selection of Test Cases

Our topology construction framework constitutes a generic substratepiaoigy-
oriented self-organization. As already mentioned, a multitude of topologndseca
constructed by setting the appropriate selection function. A number of égamp
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are given in the chapters of Part Il of this dissertation. The structuffitgemcy of
our framework is related to the profiles of a given node population anghdwfEs
of the respective selection function and target topology. As a consequé
is infeasible to provide an exhaustive evaluation of the framework. Idstba
evaluation of the framework for each specific application is left for thpeetive
chapters.

Nonetheless, in this chapter we will attempt to demonstrate our framework’s
operation by focusing on two test cases underlining its two key functiaiss; th
gradually improve views of nodes by consulting their nearby neighbergrl,
to keep an eye all over the network, in search of related nodes.

Along these lines, we focus on the following two test cases:

Forming a 2-D Spatial Grid Nodes are assigned two-dimensional coordinates,
and their goal is to establish links to their closest neighbors. Building the
target topology in this test case is primarily based on the Euclidean prox-
imity heuristic. Quite informally, the general idea is that nodes gradually
improve their views with closer neighbors, which they then probe to find
new, even closer neighbors, eventually reaching their closest onds. T
emphasizes the utility of the top layer|3NITY .

Clustering Nodes in Groups In this test case, nodes are split up in uncorrelated
groups. Each node’s goal is to cluster with other nodes of the same.group
The key difference with the previous test case is that nodes canmhiaiiya
connect to groups “closer” to their own, as there is no notion of proximity
between groups. Finding a node of the same group can be accomplished
only by means of random encounters, which highlights the role of the lower
layer, the EER SAMPLING SERVICE.

Both test cases are definitely artificial scenarios, selected to demonsgate th
individual contribution of each layer. In most real applications, thowsgich as
semantic-based clustering (Chaptfand the $B-2-SuB publish/subscribe sys-
tem (ChapteB), both proximity and random heuristics are equally important for
efficient self-organization, rendering the combination of the two layétisalt

4.5.2. Generic Experimental Settings

Although VICINITY is not a synchronous protocol, it is convenient to study the
evolution of its behavior in time by meansojcles Just like in &'CLON, as well

as the generic model of theeEPR SAMPLING SERVICE, a cycle is defined as the
time period during which every node initiates gossiping exactly once, ang-the
fore, coincides with the gossiping peridd . To further simplify our analysis, in
our experiments we set the same gossiping period for botheE& BAMPLING
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SERVICE and MICINITY protocols. Therefore, a cycle is the time period during
which eachnode initiates exactlpnegossip exchangger protocol

Given that establishing random links among nodes is a trivial task forebe P
SAMPLING SERVICE irrespectively of the bootstrapping method (see Chagjter
we bypass this step and start our experiments with nodes already handanra
links. More specifically, in all experiments presented in this chapter, bowsvie
of each node were initially filled up with descriptors of random other noalés,
with age 0. Such an initialization provides uniformity in the conditions for our
experiments, and shields the experiments from behavior irrelevantioiry .

Regarding the PER SAMPLING SERVICE in the lower layer, we chose to
use CrcLON. CycLoN forms an excellent choice for the topology construction
framework, as it results in low correlation between the neighbors of agigde
(low clustering), which, in turn, maximizes the randomness of the new neighbo
received in each gossip exchange.

Finally, all experiments presented in this chapter were carried out with the
PeerSim open source simulator for peer-to-peer protoBasrSin

4.6. TEST CASE A: FORMING A 2-D SPATIAL GRID

We consider a two-dimensional space. We assign each(moglecoordinates,
such that they are (virtually) aligned in a regular square grid organizatfon
node’s coordinates constitute its profile. Each node’s goal is to establishttin
its four closest neighbors, to the north, south, east, and west.

The natural choice of a selection function for such a target topologyés on
that gives preference to neighbors spatially closer to the refererdm fdore
formally, we define the distance between two noBesnd Q, with coordinates
(xp,yp) and(xq,Yq) respectively, to be their two-dimensional Euclidean distance:

dist(P.Q) = / (xp — Xg)2 + (¥p — ¥o)?

The selection functiois(k, P, D) sorts node descriptors i by their Euclidean
distance to the reference noBeand returns th& closest ones.

4.6.1. Demonstration of Test Case A

To demonstrate test case A, we simulated a network of 2,500 nodes, forming a
50x 50 grid. Figure4.5 graphically illustrates the evolution of this overlay by
depicting its snapshots at different stages. We have arbitrarily chasahgew
lengths of 10 descriptors per protocd|i{ = {cyc = 10). We have also set the
gossip lengths to be equal to the view lengthg: (= deyc = 10). This decision
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Figure 4.5: Snapshots depicting the evolution of a 2,500 node overlayinigra
50x 50 grid structure.
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VICINITY/CYCLON 10 10
VICINITY -alone 20 -
CycLON-alone - 20

Figure 4.6: The three protocol settings we compare.

was arbitrary, but we opted for small view lengths to underline the framesvor
power in forming a topology efficiently, even when each node has a veaji s
number of links.

For clarity of the snapshots, only the best four outgoing links of eacle’sod
VICINITY view are shown in Figuré.5, except for edge nodes (three links shown)
and corner nodes (two links shown). Note the existence of either oneodin@s
between two connected nodes. This is because links are directed. A lgiegle
means a single link from one node to the other (directionality not shown). A
double line means that both nodes have established a link to each other. In the
completed target topology (last snapshot) all links are double.

As stated in Sectiod.5.2 node views were initialized with random links.
This clearly shows in the first snapshot of Figdt8, taken only two cycles after
the experiment started. In the subsequent snapshots, it can be ck=mlyhat
random, long-range links are gradually being replaced by shorter linkloser
neighbors. Already after 10 cycles, most nodes have accomplishedgtiadir
by having established links to their four closest neighbors. Even nodebdke
not yet discovered all four best neighbors, have established linksdesnjust a
couple of hops away. After 17 cycles, all nodes are connected to theibest
neighbors. We say that the overlay has converged to the target topology.

4.6.2. Analysis of Test Case A

Having taken a glimpse at the way our framework swiftly builds the target grid
topology, let us now observe the experiment’s evolution more closely. Adéditio
ally, in order to demonstrate each layer’s role in building the target topolbgy,
is interesting to also observe the structuring behavior when either one tviidhe
layers operates individually.

Along these lines, we consider two additional protocol settings, with only one
of the two layers being active at a time. We compare all three protocol settings
over the same overlays. To provide for a fair comparison to the initial erpet,
where each layer has a view size and gossip length of 10, the singlesktiags
are allotted a view size and gossip length of 20. This way, nodes maintairxand e
change the same number of total links in all three settings. Fig@rsummarizes
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the three protocol settings we compare.

To study an experiment’s progress, we record the number of targettlinks
have been established at the end of each cycle. Recall that a nodesliaks
are the four links to its direct north, south, east, and west neighbonsteg/(a)
shows the number of target links that hanat been placed yet, as a function of the
number of cycles elapsed. This initially accounts for 10,000 links (2,5083%d
4 target links), and gradually drops to zero. Similarly, Figutegb) and4.7(c)
show the evolution of the same experiments for networks of 10K and 40&syod
respectively.

A number of observations can be made from these graphs. Most importantly
we easily identify MCINITY as the primary component responsible for efficient
self-organization. More specifically, we see thatdCoN-alone performs several
orders of magnitude worse than the other two protocol settings, whogm-per
mances are comparable to each other. This indicates that, for the giveh targ
topology, the crucial element accelerating self-organization@NTY .

Let us now take a look at each protocol setting separately:

CycLoN-alone It is not hard to see why @LON-alone is so inefficient. A
node’s only hope to find a target link is if that link shows up in iteGCON
view. The CrcLON view is periodically refreshed with random nodes from
the whole network. In other words, a node is fishing for target links at
blind. As expected, its time to converge increases significantly as the size
of the network grows, since the chance of finding a target link at random
diminishes.

VICINITY -alone Consider now the WCINITY -alone setting. Like before, a node
discovers a target link once it shows up in its view, which is theMITY
view now. The crucial difference, though, is that a nodels MITY view
continuouslyimproves as opposed to being random. In each cycle some
of a node’s MCINITY neighbors are replaced by neighbors at least as close
as the previous ones. This way, nodes gradually optimize their views, and
promptly reach their target neighbors.

A seemingly minor, yetimportant observation, is that the progressoiiN/

ITY -alone slows down after some point, for any network size. This can be
explained as follows. In these experiments nodes are initialized with a few
random links all over the network. These links generally are long-range
links. Also, nodes start optimizing their views (by gossiping) simultane-
ously. Some of these nodes happen to have, or acquire through théir neig
bors, long-range links that bring them quickly close to their target vicinity,
that is, help them find nodes with very close coordinates. Apparently this is
the case for the vast majority of nodes, as more than 90% of the target links
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Figure 4.7: Evolution of topology construction for test case A.
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are in place within the first 10 cycles (99% for the 2,500 node network).
As a side-effect, the number of long-range links drops dramatically. This
hinders the remaining few nodes that have not discovered their proximal
neighbors yet, from getting quickly in their respective vicinities. Instead,
they have to reach their target vicinities in many, small steps, “crawling” in
the almost converged overlay. The number of steps is related to the network
diameter, as can be seen in the graphs for different size networks.

VICINITY /CYCLON Quite visibly, the combination of MINITY and CrCLON
outperforms any of the two constituent protocols alone. In fact, its perfor
mance comes very close to the performance afIMITY -alone, except it
does not exhibit the sudden progress slowdown we discussed diiw/ex-
planation comes straightforward from the relevant discussion. Whagsaus
the slowdown in CINITY -alone is the lack of long-range links. Here we
do not face this issue, as ther€LON layer ensures the continuous exis-
tence of random, long-range links.

4.7. TEST CASE B: CLUSTERING NODES IN GROUPS

In this test case, we provide each node witlraup 1D, which constitutes its
profile. The goal is to form clusters of nodes that share the same dbau-tom
a node’s perspective, the goal is to establish links to other nodes withrie sa
group ID.

Note the clear distinction between the terms group and cluster in the context
of this test case. roupis defined as the set of all nodes sharing a common group
ID. A clusteris a set of nodes forming a weakly connected (sub-)graph, that is, a
connected (sub-)graph considering the undirected version of lirtkeeba nodes.
Nodes should self-organize into clusters, in such a way that clustensuelly
coincide with groups.

The only comparison operator defined on node profiles is equality ofogrou
IDs. By comparing their profiles, nodes can tell whether they belong tcetine s
group or not. However, no other type of comparison or proximity metricéyapp
for example, we do not define any ordering of groups.

The selection functiors(k, P, D) is simple and straightforward. It starts by
selecting in a random sequence descriptors flrwhose group ID is the same
asP's. If these are fewer thak it continues by selecting randomly from the rest
of the descriptors.
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Figure 4.8: Snapshots depicting the evolution of a 2,500 node overlayrahgste
in 100 groups of 25 nodes each.
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4.7.1. Demonstration of Test Case B

Like in the demonstration of test case A, we demonstrate test case B byemwmnsid
ing a network of 2,500 nodes. Each node runsMITY and CrCLON, both with
view lengths and gossip lengths 1Qi{ = {cyc = 10 andgyic = geyc = 10). Nodes
are assigned group IDs such that a total of 100 groups exist, eaiciylZb/nodes.

Figure4.8 presents a series of snapshots of the network, illustrating the evo-
lution of clustering. For presentation clarity, nodes are displayed in-a3&0grid
organization, and all 25 nodes of any given group have been placszhtigu-
ous locations, forming a 55 sub-grid. We emphasize that the sole purpose of
this layout is to facilitate visual comprehension of clustering, while noderatre
aware of their position in this layout, but only of their group ID.

To avoid cluttering the graph, only 2 random outgoingcWITY links of
each node are shown. However, links to nodes of different growgpdrawn with
a strictly higher priority than those to the same group. Consequently, wheahea n
in Figure4.8appears to have no links to groups other than its own, it is guaranteed
thatall its VICINITY links point at nodes within its group.

As mentioned in Sectiod.5 nodes are initialized with random neighbors.
Indeed, after cycle 7 the network still seems to be dominated by random links
between different groups. Soon after that, though, the effect ofeclng starts
becoming evident. Quite visibly, nodes of the same group start forming duster
Intergroup links are gradually being replaced by intragroup onesinigdéfter
cycle 22) to a fully clustered overlay, where clusters perfectly match Hpeotive
groups. At that point the construction of the target topology is completed.

4.7.2. Analysis of Test Case B

Similarly to the analysis of test case A in SectiB.2 we investigate and com-
pare the performance of our two-layered framework to that of each coemp
acting individually. We run experiments for the same three protocol sett@#sgs,
listed in Figured.6.

As stated already, a node’s goal is to get clustered with other nodes of its
group. This task is divided in two steps: first, discover the right clusesorsd,
get well connected in it. MCINITY excels in the second. Through a single link to
the target cluster, a node rapidly learns and becomes known to additimehes n
in that cluster. It turns out that the crucial step in this test case is the fiest o
discovering the target cluster. Along these lines, we quantify the pregfesur
experiments by counting the number of nodes that have established atreast
link to a node of their group.

Figure4.9 plots the complementary metric, that is, the number of nodes that
donothave any links to other nodes of their group yet, as a function of the number
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Figure 4.9: Evolution of topology construction for test case B.



104 FROM RANDOMNESS TOSTRUCTURE: VICINITY CHAP. 4

After 1000 cycles

Figure 4.10: Snapshot of the overlay produced bgMITY -alone. Some nodes
are still not connected to their group’s cluster after 1000 cycles, andwiie
never be.

of cycles elapsed. The three graphs correspond to networks ofsi9e 20K, and
40K nodes. In each graph, the progress of all three protocol settipistted. In

all cases, groups consist of 25 nodes each, so we have 100,40D6@0 groups
in the networks of 2500, 10K, and 40K nodes, respectively.

The most significant observation is that, unlike test case A, the worsvioeha
is now exhibited by WCINITY operating on its own. WINITY -alone stops con-
verging after some point, failing to fully build the target structure. On the eontr
the other two settings, namely&NITY/CycLON and CrcLON-alone, perform

comparably to each other. This indicates that in this test case the key camhpone

is CyCcLON, or more generally, theEER SAMPLING SERVICE.
Let us now elaborate on each protocol setting separately:

VICINITY -alone Apparently, no matter how long I¢INITY runs on its own,

some nodes never manage to discover their groups. This is also depicted
in Figure4.10, which shows a snapshot of the network with 2500 nodes,
after 1000 cycles of YCINITY -alone execution.

It is not hard to see why this happens. As nodes start clustering with other
nodes of the same group, the pool of intergroup links in the network shrink
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significantly. In fact, this is accelerated by the absolute transitivity property
this selection function exhibits. Once a node forms a link and gossips to
another node of its group, chances are it will acquire links to more nodes
of the same group, rapidly trading its intergroup for intragroup links. In no
S0 many cycles, most nodes end up having neighbors from their owp grou
exclusively. Also, clusters start becoming self-contained, that is, tbdes

link among themselves, but not to nodes of other groups. Note that this
behavior matches the intentions of&/NITY .

The problem comes with nodes that have not come across other nodes of
their group early enough. If a node’s neighbors are all from otheupsg,

and these groups have already clustered into closed, self-containeglus

the node has no chances whatsoever to be handed a link to a node of its own
group, ever. A neighbor from such a self-contained foreign gr@unpanly
provide alternative neighbors of that same, foreign group. The ribds,

finds itself in a dead end. Obviously, in our experiments a number of nodes
end up trapped outside their groups (see &if).

This demonstrates the need of a source of random, long-range linke-to pr
vent such dead end scenarios. This role is undertaken byehre 8AM -
PLING SERVICE.

CycLoN-alone When CrcLON operates alone, descriptors float around in a ran-
dom fashion. Coming across a node of the same group is purely a matter of
luck. As naive as it may seem, it is the only way to discover nodes of the
same group, since nothing but the equality operator is defined for corgparin
the profiles of nodes.

Note that &’cLON-alone and VCINITY -alone perform comparably in the
beginning of each experiment. However, later on, the latter is hindered
by nodes being already clustered, and thus, not useful for providist
information. CrcLON-alone does not suffer from this problem.

VICINITY /CycLON When we apply our framework in its normal form, that is,
VICINITY and CrcLON combined, we get the best results.

The VicINITY/CyCLON protocol setting converges at a rate very similar to
CycLoON-alone, except for a number of cycles in the beginning of each ex-
periment, during which it converges faster. The explanation of this hehav
lies in the details of gossip exchanges in each setting, and is an interesting
topic to elaborate on.

In CycLoN-alone, when a node initiates a gossip exchange it contacts a
neighbor, and retrieves 20 new, random neighbors. Its chance ta finde
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of its own group in these new neighbors, is roughly 20 over the network
size.

In VICINITY/CYCLON, when a nodeP initiates gossiping it contactsvo
neighborsQ. on account of @cLoN, andQ, on account of VCINITY . It
retrieves 10 new neighbors from each of them, giving a total of 20 tlgxac
as many as in the YLoN-alone case. Fromy, it retrieves 10 random
neighbors. FromQ,, however, it retrieves the 16ptimal descriptors out
of both its views. Thus, if a descriptor frofis group layeitherin Q,’s
VICINITY or Q,'s CYCLON view, it is guaranteed to be one of the 10 de-
scriptors sent fron@Q. back toP. As a consequenc®,will acquire a neigh-
bor of its own group with a chance of roughly 30 over the network size,
which explains the faster convergence oveicCoN-alone. Later on, when
nodes start clustering per groupjANITY views increasingly consist of
links to nodes of a single group. Their utility in providing links to a variety
of groups diminishes, and's chance of finding a neighbor from its group
drops to roughly 20 over the network size (10 random nodes @gnand

10 more from itxQ,’s CYCLON links).

In this test case, we saw that theeR SAMPLING SERVICE is essential to the
successful construction of target topologies that are clustered in digjaiops.

In a more general sense, theER SAMPLING SERVICE is necessary to all target
topologies for which WYCINITY alone could result in nodes becoming permanently
trapped in a non-optimal neighborhood.

The necessity of thefEER SAMPLING SERVICE layer becomes more evident
when new nodes join an already clustered network. Then, unless tppgiinéo
join by chance to the right neighborhood directly, they will never managedchr
it.

4.8. DISCUSSION AND RELATED WORK

In this chapter we presented a framework, by means of which networks ca
self-organize into a given target topology. The target topology is egprk by
means of a selection function that selects which neighbors are optimaldor ea
node. The framework consists of two layers. The top layet/MTY, strives for
optimizing a node’s neighbors with respect to the selection function. The lowe
layer, an instance of theB2R SAMPLING SERVICE, ensures that each node also
maintains some random neighbors.

The most significant advantages of the framework are that it is simple and
generic. Simple, because each node acts autonomously, performingemseq
of simple steps and taking local decisions, without requiring the deploynient o
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any dedicated infrastructure. Generic, because it is applicable to a aiyw

of target topologies, given the appropriate selection function. The ajity

of the framework will be demonstrated by some applications in Part Il of this
dissertation, without, though, this being an exhaustive set of potentikid apns.

On the theoretic side, Kleinberg’s results on navigation in small-world net-
works are highly relevant to our worl[einberg 2000ba, 2001, 2004. Klein-
berg studied the qualitative properties of networks that optimize the effeetbs
of decentralized routing algorithms in discovering short paths betweenddesn
based exclusively on local routing decisions. He proved that for eaehay
there is a critical distribution of long-range links, that allow decentralizetimg
algorithms construct routing paths of lendflflogn). For all other long-range
link distributions, decentralized algorithms can only find asymptotically longer
routing paths. More specifically, inkadimensional lattice network, optimal navi-
gability is achieved when long-range links between nodes of lattice distearee
established with probability proportional tg/rk.

In principle, Kleinberg's results are key to distributed topology constragtio
as the joining of a new node is essentially a problem of navigating to its optimal
neighbors. Let alone that decentralized routing is often the purpose ¢érthet
topology itself. In practice, however, these results are not applicablertvark
for two reasons. First, unlike our demonstration test cases in Sedtidand4.7,
in most applications nodes are not laid out in a lattice structure (e.g., seeaapplic
tions in Partll). Second, in a number of applications distance is not meaningful
betweerall pairs of nodes (e.g., see test case B, Seetidrand Chapte¥). Nev-
ertheless, the combination of a number of random long-range links (prbligle
the PEER SAMPLING SERVICE) with short-range links (provided by IZINITY)
appears to provide sufficient topology navigation for all applicationseprtes! in
Partll. A demanding application can improve its overlay’s navigational efficiency
by increasing the number of short- and long-range links maintained per aven
if the efficiency achieved is not optimal for that number of links.

Other work aiming at self-organizing a network to a certain topology has con
centrated on solutions tailored for very specific problems. Distributed Fash
bles [Rowstron and Druschel 2001Zhao et al. 2001 Stoica et al. 2001Rat-
nasamy et al. 200]are such an example, as each of them includes its own, cus-
tomized technique for building the respective overlay.

The only other research our work comes close to, is the T-Man protdeel [
lasity and Babaoglu 2002006, which has been developed independently. Al-
though there were significant differences with the original T-Man pathiela-
sity and Babaoglu 20Q4the most recent version shows a strong similarity with
our work. A difference remains that T-Man employs ta@dom peer selection
policy, as opposed to the tail policy used in our work. The benefits of tail pe
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selection in finding good neighbors faster are discussed in Setdo\n addi-
tional difference stemming from the peer selection policy, lies in the way the two
protocols do garbage collection. In T-Man, a predefined number ofdiftighest
age are discarded in each cycle, with the motive that good neighbors ¢hsttliar
alive will soon become known again. This is the same garbage collection tech-
nique used in the BER SAMPLING SERVICE (see parametéd in Section3.2.2).
Although this is efficient for garbage collection, it results in good neighbeing
temporarily forgotten. In our framework we do not explicitly remove neighlod
high age. Instead, we select to contact the neighbor with oldest aged¢aibp-
lection), and remove it from the IZINITY view. If it is still alive, it is reinserted
in the view right away. If not, it simply remains removed. This way, a node’s
alive good neighbors remain continuously its neighbors. On a smaller note, our
framework provides higher flexibility with respect to the number of desaigpr-
changed when gossiping. This has a direct impact on the bandwidthnetatly
when node profiles carry bulky information.

Concluding, the framework presented in this chapter constitutes a fundamen
tal, generic protocol. We have already applied it in different argaslfaris and
van Steen 20Q5/oulgaris et al. 2006 and it is employed in multiple applications
throughout this dissertation, where it is also analyzed more specifically.
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CHAPTERS

Routing Table Management:
Building Pastry

One of the fundamental subjects of this dissertation, theRFSAMPLING SER-
VICE studied in Chapte3, introduces a model of communication based on random
contacts. The aim is to exploit randomness to disseminate information across a
large set of nodes in a simple, robust, and timely manner. Disseminating member-
ship information itself results in highly connected and remarkably robustayse
that are adaptive to network changes, and appear to demonstratea@ifyhe-
havior in the face of major network disasters. And all that comes with a very
simple framework, free of any type of centralized structures or adminigtratio
operating in a fully autonomous, self-organizing fashion.

A different significant direction of recent research in P2P systensphan
in designing overlay networks for routing. Such systems are widely kremsvn
Distributed Hash Table¢DHTS). The respective protocols operate in the appli-
cation layer, on top of an existing network physically interconnecting alesod
(such as the Internet). They assign each participating node an IDpatelmes-
sages to a node based on that, rather than based on its IP addressn&eré (in
terms of routing hops) is usually inferior compared to traditional IP routing, b
this is not the point. Their significance lies in the fact that they map ID keys to
nodes, in a way similar to traditional hash tables mapping numeric keys to table
entries. This function is crucial as a building block for numerous othelicpp
tions, such as distributed network storage (OceanSkubiftowicz et al. 200D
and PAST Rowstron and Druschel 200phdistributed web caching, etc. A num-
ber of DHT systems have been proposed to date, most important rejatessn
being PastryRowstron and Druschel 200 &apestry Zhao et al. 20012004,
Chord [Stoica et al. 2001 and CAN [Ratnasamy et al. 200[LaTheir common
property is that they all try to form and maintain some sort of structure s@os
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large number of participating nodes, that is then used to route packets &meomg
However, their behavior is uncertain in the presence of highly dynamicagrnv
ments, or serious disasters (i.e. half of the nodes disconnecting simulsyjeou
or when bootstrapping a system from scratch.

In this chapter we present an alternative approach to building and manag-
ing DHT routing tables, based on th&e®R SAMPLING SERVICE. Our approach
combines the advantages of DHTs with those of highly fault tolerant, salfrge
gossiping networks. More specifically, we focus on the Pastry DRidwstron
and Druschel 2001aand we employ the BwscAsTinstance of the PER SAM -

PLING SERVICE to bootstrap and maintain Pastry-like routing tables. We sub-
stantiate our claims by presenting experimental results from emulation in a real,
wide-area network.

Note that the research presented in this chapter constitutes our initidkeffor
towards merging the structured with the unstructured worlds. As a histoota)
it has preceded the I¢INITY protocol, which is more powerful in building and
maintaining topologies. Nevertheless, this research deserves a placedristhis
sertation, as an illustration of our first step in harnessing randomnessate cr
structure.

5.1. PASTRY-LIKE P2P ROUTING

Two of the most popular DHTSs, Pastry and Tapestry, perform routisgda
on the same concept: incrementally matching the destination’s ID, digit by digit.
In this section we present the organization and function of the principaitates
used for routing in these systems, thating tables

5.1.1. Basic Concept

Each node is assigned a unique numeric identifiendtie ID, or simplylD. When
presented with a message and a numiegig a node routes the message towards
the node whose ID is equal to the given key. Node IDs and keys atitiidgers,
forming a node ID space that spans from 0 tb-21. N has a typical value of at
least 64 to provide a sufficiently large ID space to accommodate possibly billion
of nodes. Nodes pick their IDs randomly with uniform probability from thisoe
N-bit strings. Itis, therefore, assumed that IDs are uniformly distribatedss all
geographic regions, multiple jurisdictions, and various networks.
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5.1.2. Internal Structure of the Routing Tables

For the purpose of routing, node IDs and keys can be thought of aguesce

of digits in base 2 (b-bit long digits), whereb is a configuration parameter with
typical value 4 (which impliedexadecimatligits). Routing a message to its des-
tination is achieved gradually, by matching one additional digit of the message’
key at a time, say, from left to right. That is, in each step the message islhorma
forwarded to a node whose ID shares with the key a prefix at leastigit€lul
bits) longer than the prefix the key shares with the present node’s ID¢if a
node is known. If such a node is not known, routing of that messagé* fails

To implement the logic described above in message routing, each node main-
tains itsrouting table The routing table of a node consists fb rows of 2
entries each. An entry contains the ID of a node, and its corresporfélimgdress.

A given row of the routing table containg ntries, and represents a matching pre-
fix in the node ID up to a digit position. Entries in theh row (r € {1,...,N/b})
contain nodes whose IDs share the same1l)-digit prefix with the present node.
Thec-th entry of ther-th row contains such a node, with the additional constraint
that its ID’s r-th digit is equal toc. For instance, assuming b=4 (hexadecimal
digits for the node ID), the 2nd entry of the 3rd row of the routing table fmten
437BF52. .. /4 hex digits in total) is some node whose ID starts witR,4@hile

the 8th entry of its 5th row has a node whose ID starts with 837B

5.1.3. Routing

Upon receiving a message, a node compares the message’s key to it®ntide
they share a common prefix ofligits, it should forward it to a node whose ID
shares a prefix of+ 1 digits with the key. To accomplish that, the present node
looks up the(i + 1)-th row of its routing table, which contains nodes sharing with
the key the samefirst digits. Out of that row, it picks thi-th entry, wherek is

the value of the key’si + 1)-th digit, and forwards the message to that node. That
node not only shares with the key the same fidigits, but also thdi + 1)-th
one. This process continues either until the node whose ID matches allafigits
the message’s key is reached, or, else, until the message cannovhedfm any
further.

1in fact, current systems consult auxiliary structures that they mairgaith(as théeaf setin
Pastry), which will not be considered in this chapter.
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5.2. BUILDING ROUTING TABLES

An important issue in DHT-based peer-to-peer systems is managing the rout-
ing tables. These tables are kept up-to-date by having nodes that joaverthe
system contact other nodes explicitly. To handle failures, heartbeatithige are
used to probe nodes and to take measures when a failure is detected.

We propose a different approach, namely to separate routing fromrteie
agement, similar to the separation deployed in Internet routing protocolsasuch
OSPF Moy 1994 or RIP [Hendrick 1988 We believe such a separation often
leads to a cleaner and simpler design, although sometimes at the cost of perfo
mance.

In Chapter3 we showed that by means of the R SAMPLING SERVICE an
overlay can handle dynamics and stay up-to-date in a lazy fashion. F&r DH
based peer-to-peer systems, we propose to deployghr BAMPLING SERVICE
for maintaining routing tables. Our method is completely decentralized, highly ro-
bust, and quickly adjusts itself to major changes in the network. Thesetadesn
come at the price of continuous bandwidth consumption.

5.2.1. The Principal Idea

The REER SAMPLING SERVICE has a number of important properties, as de-
scribed in section 2. It maintains a strongly connected overlay, sustaastetis,
adapts fast to (possibly major) network changes, and is highly scaldidegdal
is to combine its adaptivity strength with the efficiency of the routing scheme pre-
sented in SectioB.1, to create a robust, highly fault resilient, peer-to-peer overlay
network for efficient routing.

The principal idea is to harness the knowledge of random neighborgte po
late routing table entries. Every node’s view is periodically refreshed witlima-
ber of new neighbors, chosen at random amalhghe participating nodes. All
a node has to do, iseepthose—randomly acquired—neighbors that are suitable
for filling up its routing table entries.

A node’s routing table consists df/b rows. Let us first concentrate on build-
ing the first row. Considering a division of nodes in classes based anlfilie
first digit, we have 2 classes (since a digit Isbits long). The first row requires
one arbitrary representative from each class (excluding the presdats class).
Since node IDs are evenly spread across the ID space, each dtasstacfor
roughlyz—lb of the nodes. Therefore, with reasonably high probability, a node will
have come across at least one representative from each class idenreore
than 2 random nodes become known to it. Assumifig=216 (forb = 4) and a
view sizelpss= 20, this could even happen in one cycle, or, otherwise, in a couple
more. So, each node’s first row can be filled up in a matter of a couplectdy
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by pulling suitable neighbors from the dynamically refreshed® SAMPLING
SERVICE View.

For the second routing table row of a nodewe consider the set of nodes
whose IDs start with the same first digit Bs ID, and we split them in classes
based on their ID’seconddigit. Again, we have ® classes. However, each of
these classes corresponds(gg)2 of the whole network, one order of magnitude
smaller fraction than the respective classes based on the first digit. aBgribie
respective classes for rokvcorrespond t((z—lb)k of the nodes, which becomes a
very small fragment of the network for higher valueskofinstead of relying on
random nodes from th&holenetwork to hit upon representatives of these classes,
we pick random nodes from a pool containimgly nodes having IDs with a given
first digit. Such a pool is realized by a separate instance of HERBAMPLING
SERVICE, involving only nodes whose IDs start with the same first digiPas
ID. In that pool, each class correspond%}@f its nodes, so representatives of all
classes are discovered rapidly, like representatives for the firsiSiomilarly, ad-
ditional instances of theEER SAMPLING SERVICE are employed for the efficient
discovery of neighbors suitable for the rest routing tables rows. Thislaa to
the multilayer BEER SAMPLING SERVICE architecture explained in the following
section.

5.2.2. Multilayer Architecture

To efficiently build and maintain routing tables, we run multiple instances of the
PEER SAMPLING SERVICE. A single physical node can participate in several of
them, by running a separagégent(i.e., software acting as a virtual peer) for each
one, maintaining its own, separate view of neighbors, and gossiping indeipiy
from the other agents. In fact, each node runs exa¢ttlyagents, participating in
an equal number of BER SAMPLING SERVICE instances. Each agent is respon-
sible for maintaining one of thE /b rows in the node’s routing table. The agent
responsible for row € {1,...,N/b} of nodeP will be referred to asgent #r of
node P

Each agent of a node sets its own criteria on which neighbors to accemtt Ag
#i of nodeP maintainsonly neighbors whose IDs start with the samel digits
asP’s ID. Moreover, a node’s agent gossipsexclusivelywith agent # of other
nodes, as shown in Figuf1l In other words, when agents &f two nodes
gossip with each other, it implies the respective IDs of their nodes start atith (
least) the same— 1 digits. Otherwise, neither would have been a neighbor of
the other, which is necessary to initiate gossiping. Additionally, the rest of the
neighbors have IDs starting with the same 1 digits too. What we see is that,
agents #of nodes that share the same firstl ID digits, essentially run their own
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instance of the PER SAMPLING SERVICE, forming a cluster among themselves.
Consequently, the view of a node’s agentistperiodically refreshed with new
neighbors of its group, that is, new neighbors whose IDs start with theisa 1
digits. That is, a node’s agenit grovides a source of random nodes from the pool
of nodes whose IDs start with a givén— 1)-long prefix. Note that agents #1 of
all nodes participate in the same®ER SAMPLING SERVICE overlay, includingall
nodes (as they all—trivially—start with the same 0 first digits), thus, maintaining
the whole network in a single, connected cluster.

Peer X Peer Y
-
\
': p Rz |
1 4
\ ’
‘
Peer Z Peer W
L
[rgema |4
\
T Agents |

Figure 5.1: Communication of nodeduring one communication cycle.

To facilitate and speed up the clusteringaf nodes of a given ID prefix
in the appropriate PER SAMPLING SERVICE cluster, we devise the following
interaction between a node’s agents. Neighbors acquired by agehahode,
therefore sharing a comman— 1)-long ID prefix, could be of interest to agents
#(i+1), #(i+ 2), and so on, of that node, if they additionally share the same
th, (i +1)-th, etc., ID digits, respectively. In these lines, neighbors that become
known to a node’s agent 7realso reported to the same node’s agefit#1),

#(i +2), and so on. These agents filter the neighbors received from agant#
keep the ones matching their prefix requirement in their view (by replacing the
oldest view items).

An important observation is that once agenitoftall nodes that share the
same first — 1 ID digits have formed a single cluster, agenfis#1) of the nodes
among them that also share an arbitrary sathedigit form a single connected
cluster very fast. Each agent kearns aboutpss random peers with the same
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firsti — 1 digits everyAT time units. Assuming evenly distributed node IDs, we
expect that on averagdgss/2° of the peers that become known evafly time units
share the-th ID digit too with the present node in addition to the first1 digits.
Given typical parameter values 6fss= 20 andb = 2, one or more peers sharing
i digits become known eveT time units on average. This partly explains why
all agents of every node form clusters quickly, as we shall see later.

Notice that, initially, every node’s agenti#- 1) forms its own (trivial) clus-
ter, disjoint from all the rest. Such a cluster generally expands on gath af
agent # since a random peer satisfying the prefix requirement of agént ¥
is introduced. Moreover, two clustersmndm nodes unite if any of tha nodes
of one of them happens to learn about the existence of any ahthades of the
other. Therefore, the larger disjoint clusters get, the more likely it bectinegs
will unite. What we are seeing, is an increasingly accelerating behaviorin th
process of merging disjoint clusters. It is therefore reasonable to statagénts
#(i + 1) of a set of nodes sharing the same firstligits form a cluster in just a
few cycles, provided agents &f nodes sharing the same firgi # 1) digits form
a cluster too.

As mentioned earlier, all nodes’ agents #1 participate in the same instance
of the FEER SAMPLING SERVICE, and guaranteeing a (quickly formed) single
connected cluster dll existing nodes. This helps clusters of agents #2 to form
fast too. By induction, and based on the claims of the previous paragnaph
expect all instances of theeEBR SAMPLING SERVICE executed by all agents of
all nodes, to quickly form the clusters they are designed for.

Our claims are further strengthened by the presentation of emulation analysis
in Section5.4.

5.3. EXPERIMENTAL SETTING

We implemented the architecture described in secdi@?in Java and de-
ployed it on the DAS-2, a 400-processor cluster geographically distdoover a
wide-area network across the Netherlandé.$-2]. We carried out experiments
with a set of 65,536 nodes, a number of them running on each DAS-2ss0cC
simultaneously.

We considered node IDs of length= 16 bits, and digits of length = 4 bits
(hexadecimal digits). This setting resultedNiib = 4 rows and 2 = 16 columns
per routing table.

The instance of the EER SAMPLING SERVICE we chose to employ in this
chapter’s experiments is theeM/scAsTprotocol, described in Sectidh8 Each
node was running 4 BwscAsTagents, one for each of its 4 routing table rows. A
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view size of¢ = 20 was used for each#NvscAsTagent. We ran our experiments
with the same refresh interval AfT = 10secfor all agents. That is, every 10 sec-
ondseachof the 4 agents of each node initiated a gossip exchange. We recorded
and analyzed the behavior of our architecture at intervals of 60 sectmat is,
we logged the whole network’s state every 6 communication cycles.

Another facet of our experiments that is worth noting is bBo®tstrapping
mechanism. By bootstrapping we refer to the procedure of providingsnoik
the information required to jump-start the overlay network’s formation. imcpr
ple, a new node joins by contactiagyexisting node and gossiping with it. When
the whole network starts from scratch, a systematic way has to be pregeot to
vide one or more initial communication points to each node. In our experiments,
all nodes’ agents #1 were provided with the address of one singlesaglent #1,
forming a star topology. Providing agents with a choice of—paossibly random—
agents to initially connect to, enhances the randomness of the networkHeom
early cycles. However, a bootstrapping mechanism as simple and centraize
the one we chose further endorses our claims of our architecturefagergent
behavior, as discussed in the following section.

Finally, we imposed a fake large-scale failure while the experiment was run-
ning, in order to observe and analyze the behavior of our system incases.
In particular, we killed 50% of the nodes in the middle of the experiment. Our
observations of the experiments and their analysis are presented in tharfgllo
section.

5.4. EXPERIMENTAL RESULTS AND ANALYSIS

This section presents the output of our experiments with 65,536 nodes. We
recorded and analyzed two aspects of the system’s behavior: dynamiadoof
the routing tables when bootstrapping, and following a large-scale failure.

5.4.1. Bootstrapping

This experiment aims at observing the system’s behavior while bootstrapping

Figure5.2presents the system’s fast convergence to a fully operative routing sub

strate. It shows the average number of routing table rows that are comfilétd

per node, as a function of the number of cycles elapsed from the expesrsi@urt.

A node’si-th routing table row being completely filled means that the node can

routeanymessage whose key sharesl digits with the node’s ID to a peer node

whose ID additionally matches theh digit of the message’s key. Note that the

system manages to filll routing table entries iall nodes in less than 30 cycles.
Figure5.3illustrates the effectiveness of routing messages. From each node
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# of filled pows ——

Number of filled routing table rows
N

Cycles

Figure 5.2: Average number of filled routing table rows.

we routed a number of messages to random nodes. Fgg(a@ shows the num-
ber of routing steps (hops) messages took en route to their destinatiorerage.
Initially, routing tables are empty, so messages cannot take any stepsgdieird
destinations. However, as routing tables start being built, messages follow in
creasingly more routing steps towards their destinations. This graph is akin to
Figure5.2, as the number of routing steps a message takes is directly dependent
on the number of routing table rows that have been filled.

Figure5.3(b) shows the percentage of messages that manage to reach their
destinations, as a function of the number of cycles. For the first 10 cimles
or none of the messages reach their targets. As routing tables are filleel, mor
messages are routed all the way through to their destinations. As it turradteut,
the first 24 cycles, 99.74% of the messages are delivered to their destinatil
after 30 cycles, this fraction increased to 99.998%.

5.4.2. Robustness to Large-Scale Failures

To test the system’s behavior in the face of large-scale failures, we imetiyio
killed half of the nodes in the network, at some point when all routing tables were
guaranteed to be completely filled. That point corresponded to approxymate
10 minutes after the start of the experiment. We refer to the cycle when this
catastrophic failure occurred as cydieMore specifically, we killed all nodes with
an odd ID. As expected, BlwscASTmaintains the surviving nodes connected in
a single cluster. As we will see, the overlay adapts very quickly to reflect th
modified network.

Figures5.4 and 5.5 are analogous to the previous figurés?2 and 5.3, re-
spectively. Figureés.4 shows the average number of routing table rows that are
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Figure 5.3:(a) Number of routing steps taken on avera(®;Percentage of mes-
sages reaching their destination.

completely filled (with valid entries), per node. Note that outdated entries of
crashed nodes (the ones with odd IDs) are not considered valid, arefdte

are not counted. Immediately after the crash none of the routing table rews a
fully filled, which implies that all routing rows of all nodes also contained some
entries with odd node IDs. However, as can be seen in the diagram, reatieg

are filled very quickly. Within 30 cycles from the point of disaster, the fiiste
routing table rows of all nodes have been filled. Note that this is the maximum
number of rows that can be filled per node. The 4th rows of all routing gable
cannot be filled, as they would require nodes that match all possible casbs f
last digit of their IDs. Since nodes with odd IDs do not exist any more, ibts n
possible to fill up these rows. This, however, does not affect roudisgputing
paths to all existing nodes (i.e. nodes with an even ID) do exist and ardetemp

The system'’s capability to route messages can be seen in Fdurd-ig-
ure5.5@) shows the average number of hops a message traverses. Initialty, sin
half of the nodes have been removed, messages are routed on dvalfagay
through to their destination. As routing tables are adjusting to the modified net-
work, messages follow more hops towards their destinations. Fig&(i® shows
the percentage of messages that reach their destinations. Just like intbtedm
ping case, routing tables are formed very quickly. It takes less thanc®sdyom
the moment of the crash to form routing tables that can route any message fro
anysource tcanydestination.
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Figure 5.4: Average number of filled routing table rows when recoveriom &
50% node crash that happened at cytle

5.4.3. Bandwidth Considerations

In this section we provide an estimation of the individual (per node) anceggte
bandwidth used in our experiments. Despite the 16-bit node IDs we usen in 0
experiments, we make the estimation assuming node IDs of 64 bits, which would
be the ID size in real operation.

A node descriptor consists of 16 bytes: 8 bytes for the node’s 64-bitt 1D
bytes for its IP address, 2 bytes for the port, and 2 bytes for the destgippme-
stamp. The view maintained by each agent of a node/ha20 descriptors,
which account for 320 bytes. A view exchange involves sending the toeav
peerand receiving the peer’s view, causing traffic of 640 bytes in total. Every
AT, each agent of every node initiates exactly one view exchange, anglaaitin
ipates on average in one view exchange initiated elsewhere. Thersforeiew
exchanges per agent cause traffic of 1280 bytes. For all foutsgesingle node
exchanges 4 1280= 5120 bytes evernAT = 10sec That is, 512 bytes per sec-
ond, or 4096bps (4Kbps). This is the price to pay for achieving fullyraipes
routing tables in less than 3010 = 300 seconds, which is 5 minutes.

For the aggregate bandwidth we multiply the individual node bandwidth by the
number of nodes and divide by two, since the traffic caused by eaclexigvange
has been counted twice, once for the gossip initiator and once for thig gess
cipient. Therefore, we have a total bandwidth of %6 x 4/2 = 131 072Kbps,
which is 128Mbps. Note that even though this bandwidth seems too high, it is in
fact distributed across the whole (possibly world-wide) network.

In a real system, with 64-bit node IDs, and a digit length of 4 bits, we would
need 16 agents running per node. This would require the exchan§exdfZ2B0=
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Figure 5.5: Message routing while recovering from a 50% node crashhépa
pened at cyclal. Left: Average routing steps taken. Right: Percentage of mes-
sages delivered.

20,480 bytes evenAT per node. Note that the refresh intenal;, is a config-
uration parameter. By setting a longer refresh interval, we can lower the ba
width used by each node, at the expense of slower completion of the raating
bles. For instance, a refresh interval®F = 60secwould require a bandwidth

of 20,480/60~ 341 bytes per second, or roughly 2.7Kbps. However, in that case
routing tables would take longer to be filled, around 30 minutes.

5.5. CONCLUSIONS AND RELATED WORK

In this chapter we demonstrated the potential of tEERSAMPLING SER-

VICE in forming a structured overlay. In particular, we focused on managing
routing tables for DHT-based peer-to-peer networks. We introducedltilayer
architecture consisting of multiple instances of tEER SAMPLING SERVICE,

and investigated the system’s behavior through experimentation. We sliosted
the proposed system forms routing tables fast, in a totally decentralized, self
organized manner. We also showed that it demonstrates self-healingdreha

the face of large-scale network disasters.

A more recent version of Pastrastro et al. 2003has adopted gossiping
for lightweight selection of neighbors of closer proximity. Nodes peridbjica
gossip with neighbors of every row. It resembles our protocol in theesémat
neighbors of row are contacted in search of better neighbors of the respective
row. However, nodes gossip a node’s neighbors with respect

It resembles our protocol in the sense that nodes gossip with their nesghbo
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ofa

In [Jelasity and Babaoglu 20p9elasity and Babaoglu suggest an alternative
method to build a Pastry-like DHT based oEWscAsTand T-MaN, a protocol
very similar to MCINITY. They assign each node an ID, and define the distance
between two nodes as the number of different bits in the binary représaesta
of the two IDs. The T-M\N ranking function(similar to the selection function
in VICINITY) gives higher preference to nodes of shorter distance. Eventually,
nodes get to establish links to all other nodes whose IDs differ only in trie b
their own ID. This topology is quite similar to the one defined by Pastry’s routing
tables. Their solution appears to be more efficient than the one propo#ed in
chapter.

Montresor et al. apply T-MN and NEwSCASTIin [Montresor et al. 2005
to bootstrap and maintain the Chord DHT. In Chord, nodes are assigrseith ID
a cyclic ID space, and each node maintains links to nodes of succeBsiyvatl
steps 2 i = 0,1,2,... Montresor et al. define a T-MN ranking function that
sorts nodes in a ring structure (based on numeric ID distance). As dsbeser
neighbors of increasingly closer ID distance, they remember the onesrefric
distance closer to'2forming an overlay that resembles Chord. Although their
method is efficient, the whole process needs to be regularly restartechatial,
to refresh nodes’ routing tables and accommodate for changes in therketwo

A more sophisticated solution would include a number of optimizations, such
as giving higher preference to neighbors of high bandwidth or low |telynam-
ically adjusting the gossiping frequency at each layer, aggregatingpgoes-
sages to save bandwidth, etc. However, such optimizations are left ees\idrk.
We emphasize that the goal of the research presented in this chapterprageo
the concept of using an unstructured overlay to bootstrap and maintairctuséd
one, in a simple, self-organizing manner, exhibiting self-healing properties

The results of the experiments suggest that our system can provide roghly
bust, non-centralized routing table management. However, given theraquio
nature of this research, no special concern has been given to ighindensump-
tion. Our architecture could possibly use significantly less bandwidth iftagap
refresh intervals were applied. Also, each agent of a node coulddmaielivid-
ually optimized set of configuration parameters, such as view size anipiggss
period. However, future research in this field should explo@™MITY’s power in
building structured overlays.
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CHAPTERG

Information Dissemination

Reliable group communication forms an important class of operations in dis-
tributed systems. It is crucial to a number of applications, including event no-
tification systemsEugster et al. 2003adistributed database replicationg¢mers

et al. 1987, and distributed failure detectiowdn Renesse et al. 1998In this
chapter we are particularly interestediimiormation disseminatignthat is, the
broadcasting of messages to a set of nodes.

6.1. BACKGROUND AND RELATED WORK

One class of solutions for information dissemination is specifically designed
to take advantage of the physical properties of certain types of netwdéitis
example, a number of solutions are built to disseminate messages over Etherne
networks Babaoglu 1987 Clegg and Marzullo 1997Cristian 1990 Abdelza-
her et al. 1995 Such protocols provide high efficiency and strong reliability.
However, their use is limited to the types of networks they are designedidyr, a
therefore, they are not suitable for large-scale, wide-area networks

Another class of solutions, suitable for wide-area networks, consisiB of
Multicast protocols. These protocols are not reliable. They rely ontifumeality
embedded in routers, that enables the dynamic construction of a dissemination
tree (or generally graph) reaching all participating nodes. A numbeolofiens
have been proposed on top of IP Multicast, such as SRbyf et al. 199Fand
RMTP [Lin and Paul 199F to improve its reliability. Nevertheless, IP Multicast
is not widely deployed in the Internet.

Application-layer multicastorms a third class of solutions that has emerged
in the recent years. The main advantage of these solutions is that thegrgre v
generic, and, therefore, they can be directly deployed over todaiyigonk infras-
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tructure. There exist application-layer multicast protocols that provilikbitty
guaranteesHadzilacos and Toueg 19p3However, many of them do not scale
well to a large number of nodeRiantoni and Stancescu 1997

A class of application-layer multicast has recently emerdgdefnsary et al.
2003 Castro et al. 2002Zhuang et al. 2001 based on the structure of DHTs
such as ChordStoica et al. 20083 Pastry Rowstron and Druschel 200[Land
Tapestry Zhao et al. 2004200]. What is common in these DHTs is that, in their
respective overlays, each node is the root of a tree spanning the nétalerk.
These spanning trees are used for message dissemination. Althoughssgste
this class are nearly optimal with respect to message overhead, a single failu
along a spanning tree can result in a whole branch missing a message=d-aikir
disregarded as a whole iB[FAnsary et al. 2008 where the assumption of reliable
communication is made. Scrib€4stro et al. 20(2rovides by default best-effort
delivery. Reliability is improved to some extent by imposing TCP connections
among nodes, a rather heavy assumption for dynamic, large-scale B&Rkze
Finally, Bayeux Zhuang et al. 2001 a system mainly targeted at data streaming,
improves on reliability by redundantly disseminating messages across uiffere
paths of a spanning tree. However, its design is exposed to scalabiliteprab
as each request to join a group is routed to a single node managing that grou

Another class of protocols targeted at large-scale dissemination of data ha
recently gained enormous popularity. BitTorre@ohen 200Bis the most pop-
ular example, but numerous other protocols have been suggestedasich
bler [J.Pouwelse et al. 20Q6Slurpie [Sherwood et al. 2004ChunkCast Chun
et al. 2006, ChunkySpreadJenkataraman et al. 200@&nd CoopNetPadmanab-
han and Sripanidkulchai 20pZI'hese systems are designed for the dissemination
of large files to a set of nodes. More specifically, they aim at reducinddtwe-
load time for large files, and at the same time off-loading the servers serégsg th
files. The principal idea behind these protocols is splitting a large file in many
small parts, distributing different parts to various peers, and then lettirge tho
peers talk to each other to retrieve the parts they are missing. Such mechanisms
can be significantly effective in enhancing the download speed of |ldegeviihile
reducing the load of the server offering a file, notably when a largefsiiven-
loading peers is involved. However, they are not suitable for the disséorirat
small messages, which we deal with in this chapter.

Gossip-based protocols, such as Bimodal Multicasicés) [Birman et al.
1999 and Directional GossipLin and Marzullo 1999 form an alternative to
strongly reliable broadcasting approaches. Each node forwards sagecto a
small random subset of the network, and so on. These protocolsadjgpeovide
only probabilistic guarantees for message delivery. However, they are attractive
because they are easy to deploy and resilient to node and link failue$o de-
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dundant message deliveries. On the other hand, scalability can suftetdt are
required to maintain full knowledge of the network, notably when noderctsur
at stake. Optimizations have been suggeste&imian et al. 199pto overcome

such scalability issues.

Other gossiping protocols, suchlpbcast/Eugster et al. 2002003 and [Ker-
marrec et al. 2003Gupta et al. 2008orovision for membership management too.
In particular, Gupta et al. 200bdescribes a hybrid dissemination system, that
multicasts messages using a tree-based hierarchical structure, anddwitzlhes
to gossiping when a large number of failures is detected. These protooplthe
assumption of full knowledge of the network. Each node maintains a smalbfiew
the network, consisting of a few links to neighbors, which are used feedima-
tion. This makes them highly scalable. However, due to their probabilisticenatur
a message may fail to reach the whole network even in a fail-free envirdniieen
alleviate this, highly redundant message forwarding is employed.

In this chapter we present a gossip-based protocol that is determinisdit in f
free networks. When failures occur, its reliability degrades gracefuitly thhe
number of failures. Our protocol is based on theMITY/CycLON framework,
presented in Chaptér

6.2. EVALUATING A DISSEMINATION SYSTEM

A number of issues are of concern when evaluating or comparing informatio
dissemination systems. It is essential for the rest of this chapter to list the snetric
used to evaluate the effectiveness and usefulness of a disseminatem.sys

Hitratio This is defined as the ratio of nodes that receive a message over the
total number of nodes for which that message is intended. It is a metric of a
dissemination system’s reliability. Ideally, a reliable dissemination system
should always achieve a hit ratio 100%. In our evaluation (Seéti6nwe
present graphs of the complementarigs ratiometric, defined as follows:

MissRatio= 1— HitRatio

Resilience to failures and churn For a dissemination system to be meaningful
in a real-world dynamic network, it should operate reasonably well in the
presence of node or link failures, and node churn. The operatiogr sagh
conditions is evaluated by means of the hit ratio, described above.

Dissemination speedThe time required for the dissemination of a particular mes-
sage to complete. Obviously, the faster a message is disseminated the bet-
ter. Dissemination speed depends on two main factors. First, the delay
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in forwarding messages (processing delay on nodes plus networkyatenc
Second, the number of hops a message takes to reach the last node. In ou
evaluation we focus on the latter factor.

Message overheadThe overall number of times a message is forwarded during
its dissemination. For a message to re&thecipients, it has to be for-
warded a minimum oN times. In practice, however, message overhead
is often multiple times higher. Message overhead is a metric of a dissem-
ination system’s behavior with respect to preserving or wasting network
resources.

Load distribution The distribution of load over nodes, in terms of messages re-
ceived and messages forwarded. Ideally, load should be evenly disttib
among participating nodes.

In this chapter we are interested in reliable dissemination of messages origi-
nating atany node toall participating nodes. We do not focus on optimizing the
dissemination of messages with respect to any proximity metric or by building a
spanning tree. Also, we do not consider positive or negative ackdgetaents,
or requests for retransmission of lost messages. Instead, we introgtwe-
dancy in message dissemination and examine its relation to the level of reliability
achieved. We investigate the power of epidemics at disseminating messatjes to a
nodes, with a high probability.

6.3. DETERMINISTIC DISSEMINATION

Consider a system consisting Nfnodes, and a set of directed links among
them. A messagean originate at any of the participating nodes, and aims at
reaching the whole network. A node that generates a hew messagesivesec
a message for the first time, forwards it acrafisits outgoing links. If a node
receives a message for the second time, it simply ignores it. As an optimization, a
message is never forwarded back to the node it was just received Tiaabasic
algorithm is often referred to dwoding Figure6.1(a) shows the pseudocode for
the dissemination algorithm.

The distinguishing characteristic of flooding is that one can deterministically
control dissemination by imposing the appropriate overlay on the nodes. The
underlying requirement to guarantee complete dissemination starting from any
participating node, is to form strongly connected directed grapmcludingall
nodes. A multitude of overlays have been proposed for information disaéorin

1a directed graph in which there is a directed path between any orderesf pailes
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whennodeP generates message
or receivesn from nodeQ do
if mnot already seethen
targets« selectGossipTargeQ]
foreach T € targetsdo send{, m)
endif
end

function selectGossipTarget3]
targets— view-{Q}
return targets

end

() (b)

Figure 6.1: (a) The generic dissemination algorithm. (b) Gossip targetiselec
for deterministic dissemination (flooding).

by means of flooding, each one demonstrating a different behavior gitlecéto
the metrics listed in the previous section.

Spanning treesr simply treeswere among the first types of overlays pro-
posed for flooding. Their strong point is that they are optimal with redpettte
number of links maintained and, consequently, to the message overhea# ass
ated with dissemination. Indeed, in a network consistiny abdes, the complete
dissemination of a message over a tree involves exhctiyl point-to-point com-
munications. Their main disadvantage, though, is that a single failure of dny lin
or any non-leaf node disconnects the tree, prohibiting messages faairimg all
nodes. Also, maintaining a valid tree structure, ensuring the graph is ciedne
and yet acyclic, is not a trivial task in the presence of failures. Foethessons,
trees are not suitable for dynamic environments where failures canmappe

A special type of tree-based overlays for flooding is seever-basecdlass
(star graph3, where all nodes are connected by bidirectional links to a single
node acting as a relay server. In these overlays all but the serveraredeaf
nodes, therefore their failure has no effect on the remaining nodeth)éserver
becomes a single point of failure. In addition, such overlays demonstratetse
possible load distribution, the server node being linearly loaded by the mwhbe
nodes and number of messages being disseminated, rendering it aatedvlesc
solution.

On the other end of the spectrum kiques(complete graphs In such a
setting, every node has a complete view of the network. A node broadcasts
message by sending it to every other node in the network. This providesomax
reliability, at the cost of high maintenance costs. Although messages aleasts
all nodes irrespectively of how many nodes have failed, maintaining this type
of overlay is impractical. Maintaining a fully connected graph is expensive in
networks larger than a few dozen nodes, notably when the membershigeshan
continuously.

A class of flooding overlays deserving more attention is the one based on
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Harary graphs introduced by Harary inHarary 1962, further studied by Jenk-
ins and DemersJenkins and Demers 200&nd applied by Lin et al.Lin et al.
200Q in flooding. A Harary graph of connectivityis a minimal link graph that is
guaranteed to remain connected when up-td nodes or links fail. Its minimum
cut, therefore, consists oflinks. Moreover, in a Harary graph links are evenly
distributed across nodes, each node having eitber+ 1 bidirectional links. An
example Harary graph of connectivity 2 is a bidirectional ring, that we veid u
later in Sectior6.5.1 Such overlays are very appealing for information dissemi-
nation in the presence of failures, as they are guaranteed to sustain aertaia
number of failures while imposing the minimum message overhead (for the cor-
responding reliability guarantees), and this overhead is evenly balacoess all
nodes. The maintenance of such graphs, notably of higher connettiwity be a
complicated and expensive task for large-scale, dynamically changiwgnks.

6.4. PROBABILISTIC DISSEMINATION

Acquiring reliability by imposing systematic structure on overlays is infea-
sible in dynamic networks of massive scale. In this section we take a look at
an appealing alternativggrobabilistic disseminatioralgorithms, which trade-in
deterministic reliability guarantees in return of overlay construction and mainte-
nance simplicity.

In these algorithms, dissemination is not guaranteed by means of a strategic
topology, but by increased redundancy in message forwarding. d$ie loea is
that a node receiving a message forwards it to a numbemnafomother nodes. It
turns out that if that number is sufficiently high, messages reach all naittes.
high probability Kermarrec et al. 2003 The choice of random nodes to forward
messages to can be easily handled by a peer sampling protocol as destribe
Chapter3. The main advantage of probabilistic dissemination algorithms is that
they are very simple to implement and inherently tolerant to dynamic environ-
ments, at the cost of an increased message overhead.

6.4.1. The RANDCAST Dissemination Algorithm

We consider a system consisting fnodes. Each node runs th&#R SAM-
PLING SERVICE, providing it with a small, random, partial view of the network.

A message&an originate at any of the participating nodes, and aims at reaching
the whole network. A node that generates a new message or receivessagee
for the first time, forwards it to (up tdy nodes, called the nodegossip targets
chosen randomly from its membership protocol’s vidwis a system-wide pa-
rameter, called theanout A message is never forwarded back to the node it was
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function selectGossipTarget3]
targets— F random nodes fromiew-{Q}
return targets

end

Figure 6.2: Gossip target selection for theN® CAST dissemination algorithm.

just received from. Figuré.2 shows the pseudocode for the selection of gossip
targets in the RNDCAST dissemination algorithm.

Note that this algorithm is quite efficient at spreading a message to a consid-
erable percentage of the nodes in the network very fast, specificaltpanential
speed with baskE. Indeed, a new message progressively reaERd¢s1, the mes-
sage generatorf!, F?, ... other nodes. Consequently, a message spreads very
fast even for small values &f > 2. Of course, dissemination slows down when
the message is forwarded to nodes that have already received it. eipuvesn
overlay with highly randomized links (low clustering), such as the one foroyed
CycLoN, this slowdown turns out to be negligible until the message reaches a
substantial percentage of the network.

Despite its strength at spreading messages fastpRCAST is not as efficient
at achievingcomplete disseminatipthat is, to reach every single node in the net-
work. It is by nature a probabilistic algorithm. Even in the absence of fajure
it provides no hard guarantees that a message will rafigtodes. It is not hard
to see why. By forwarding messages at random, a node has no gesrdraeat
least one of its incoming links will be chosen to forward the disseminated mes-
sage. To alleviate this, abundant redundance should be introducedamg wikea
large fanout. However, this is not desirable, because message adencecases
proportionally to the fanout, as we will see in the evaluation in Se@ién

The RaND CAST dissemination algorithm has been analyzed and evaluated by
Kermarrec et al infkermarrec et al. 2043 In that paper, a node’s view is chosen
uniformly at random among the whole network. In the version aNBCAST
studied in this dissertation, nodes’ views are managed¥ayLON.

In the following section we introduce a novel, hybrid dissemination algorithm,
combining deterministic and probabilistic dissemination. We defer the evaluation
of both protocols until SectioB.6, where they are compared side by side.
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6.5. HYBRID DISSEMINATION

As we discussed above, although probabilistic protocols are goodesdspr
ing messages fast even for small values-ofa large value of is mandated to
reach every single node in the network. This inefficiency can be tacki@utio-
ducing somaleterminisnin the selection of gossip targets, ensuring any possible
dissemination graph is connected and includes all nodes.

Hybrid dissemination protocols aim at combining probabilistic and determin-
istic behavior. To that end, they establish two types of links among nodesloRa
links (r-links) contribute to their probabilistic behavior, and deterministic lindks (
links) bring in determinism. R-links are simply links randomly selected, just like
in purely probabilistic dissemination protocols. When presented with a message
a node forwards it across a few r-links. Consequently, messages insfiaéad to
a large portion of the network at close to exponential speed.

However, a disseminated message should reach every single node in-the ne
work. That is, it should have been forwarded across at least onaing link of
each node. The basic idea is to establish a set of d-links, and have detdes
ministically forward messages acroa their outgoing d-links, in addition to a
few of their outgoing r-links. If the set of d-links forms an overlay complitm
the deterministic dissemination protocols’ requirement, that is, it forms a strongly
connected directed graph including all nodes, complete dissemination cigesss
is guaranteed. In such a graph, each node’s indegree is at leastdowdr, if we
ensure that each node has at léastoming d-links, then complete dissemination
is guaranteed even in the presence of up-td faulty nodes.

Hybrid protocols effectively decouple the two fundamental goals in inferma
tion dissemination. On one hand, spreading a message to a large peragntage
the nodes fast, and on the other, reaching every single node. Thabjistx
component carries out the bulk of the dissemination task, while the deterministic
one takes care of the fine-grained details.

What makes hybrid dissemination protocols attractive, is that the set ofgl-link
does not need to form a particularly sophisticated and hard-to-maintaatustu
The sole requirement is that the set of d-links forms a strongly conneictareati
graph over all nodes. A simple structure satisfying this requirement is alring
the following section we explore how it can be used as a basis for a plactica
hybrid dissemination system.

6.5.1. The RNG CAST Dissemination Algorithm

We introduce RNGCAST, a novelhybrid dissemination algorithm that—even
with a very low fanout—guarantees complete dissemination in a failure-free en
vironment. In the presence of failures, its performance degradesfgligcnev-
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Figure 6.3: Example of a RGCAST overlay. Nodes are organized in a bidirec-
tional ring (by means of thd-links), and each one has a number (in this case only
one) outgoing random links-(inks).

ertheless still outperforming A&DCAST. Finally, when confronted with contin-
uous churn, RVGCAST proves again more reliable thamaRD CAST, excluding
nodes that joined the system very recently (for which it performs worse)

Operation

As discussed above, hybrid dissemination algorithms maintain two types of links
between nodes, namely r-links and d-links. R-links are random links, inatbe c

of RINGCAST formed by CrCLON, just like in RANDCAST. With respect to d-
links, RINGCAST organizes nodes inglobal bidirectional ringstructure. A bidi-
rectional ring constitutes a strongly connected graph, as requiredéyrdeistic
dissemination protocols. Figu&3 illustrates an example IRGCAST overlay,
where nodes form a bidirectional ring, and each one has a single ogitglark.

A unidirectional ring would be appropriate as well, as it forms a strongly con
nected graph too, though less reliable than a bidirectional one in the fdag- of
ures. However, the crucial reason for deciding on a bidirectionalli@sgn the
ring construction, and will be discussed in the following section.

Just like in the dissemination protocols discussed earlier, a node that gener
ates a new message or receives a message for the first time, forwarfgoitd
F nodes, wheré& is the system-wide fanout parameter. However, in the case of
RINGCAST, a node always forwards a message to its two ring neighbors (sending
it across its two outgoing d-links), and acrdss- 2 randomly selected r-links.
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function selectGossipTarget3]
targets— {}
if ringNeighborl# Q then targets— targets+ {ringNeighbor%
if ringNeighbor2# Q then targets« targets+ {ringNeighbor2
targets— targets+ (F —targets.sizerandom nodes fromview—{Q})
return targets

end

Figure 6.4: Gossip target selection for theNBRCAST dissemination algorithm.

If the message was received through one of the node’s ring neightheraode
forwards it to the other ring neighbor, and acréss 1 random r-links. Figuré.4
shows the pseudocode for the selection of gossip targets initheGAsT dis-
semination algorithm.

Note that the minimal cut in a bidirectional ring is two. That is, although
no single node failure can break the ring in two disjoined partitions, prohibiting
complete dissemination to the remaining nodes, such a situatibaccur if two
non-adjacent nodes fail. In most cases, however, this is not a cprolalem for
dissemination, as d-links are only one facet of the process. R-linksazantbe
message to arbitrary nodes, most often bridging the gap between two odisiore
joined ring partitions. Effectively, it suffices if amynenode of an isolated ring
partition receives the message, as the message will propagate to the witiele pa
tion over the d-links. Figuré.5presents a complete dissemination scenario over
a ring split in several partitions. As we will see in the evaluation in Sedién
RINGCAST achieves a high hit ratio (higher comparatively taN® CAST) even
in the presence of many failed nodes.

Topology Construction

We employ the VCINITY /CyCLON topology construction framework for building
and maintaining RNGCAST overlays. By applying the appropriatelGINITY
selection function, we organize nodes in a bidirectional ring structure.lifiks
of this ring constitute the d-links. R-links are provided directly bydCon.

Letting nodes self-organize in a ring structure involves a global agreteanen
a consistent ordering of nodes. Along these lines, each node seleatsi@ary
sequence I@simply ID), out of a large ID space (e.g., 128 bits). Each node forms
links to the two nodes with closest IDs, one in each direction: the node with just
higher, and the node with just lower sequence ID, using modulo arithmetaserh
links define the bidirectional ring.

The VicINITY selection functionS(k, P, D), used to form this topology is
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Message ./
source ~

Figure 6.5: Example of a message dissemination in a partitioned ring. For clarity,
only a few of the followed r-links are shown.

simple and straightforward. First, it sorts peer&irbased on their sequence IDs.
Then, it selects th& ones with IDs closest to the ID &, k/2 in each direction.
That is, it selectk/2 peers with just higher, arld'2 with just lower ID than the

ID of P, using modulo arithmetic. The two peers with closest IDs—one in each
direction—are used as ring neighbors.

The choice of a bidirectional—as opposed to unidirectional—ring, was not
made only to improve dissemination reliability, but was also a crucial design
choice for topology construction. Recall from Secti2.2 that VICINITY is
more efficient if its selection function exhibits transitivity. That is, if p&ris

a “good” selection for peepP; (P, 3, P,), andP; is a “good” selection folP,
(P 3, Ps), then,P; should have a good chance of being a “good” selectio®for

too (P 3, Ps), preferably a “better” selection thd®. This way,P; can gradually
improve its links.

Obviously, this does not hold for selection functions that select nodee s
IDs in asingle given direction (e.g., only with just higher IDs). In this case, a
node’s neighbor with higher ID would only have neighbors with even higjbs,
which would not help the original node improve its links. In contrast, if nodes
were maintaining neighbors of close IDs lith directions, a node’s neighbor
with higher ID would also have some neighbors with lower (than his) ID, which
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would be potentially “good” candidates for the original node.

6.6. EVALUATION

We evaluate the two protocols side-by-side in three scenarios. First, itia sta
and failure-free network. Second, in a static network right after a trafdsc
failure, that is, after the sudden failure of a large number of nodeslifimaa
dynamic network under continuous node churn. Evaluation was doneesjlect
to the following criteria, as discussed in Sect®&

1. Hitratio
2. Dissemination speed
3. Message overhead

We do not explicitly address load balancing, because both protocoly ailre
distributing the load across all nodes evenly. A node receiving a meksageds
it to F others, just like any other node.

Experiments were carried out using the PeerSim simul®ee[Sinh. We
tested all scenarios by instantiating a network of 10,000 nodes. Eachwazde
running CrcLON and, in the case of RGCAST, VICINITY too, as described
above, with view length 20 for each protocol. Nodes were initially supplied avith
certain single contact in their\&LON views, forming a star topology. NINITY
views were initially empty. After letting the network self-organize for 100 cycle
we started disseminating messages from various nodes picked at random.

We assume a very simple dissemination model, that allows us to study the
evolution of disseminations in terms of discrete rounds, that wehogds The
generation of a message is marked hop 0. At hop 1, the message rEautigh-
bors of the origin node. At hop 2, it further reaches the neighboighters, and
so on. This way, we can evaluate the progress of a dissemination by aptivin
number of messages sent and the number of new nodes notified per hop.

An implicit assumption underlying our dissemination model is that the pro-
cessing delay and network latency between all pairs of nodes are the sd&me
though latencies vary in a real wide-area network, our assumption dokave an
effect on the macroscopic behavior of dissemination with respect to thatiait r
Dissemination relies on nodes forwarding the messages they receiveleAhmat
receives a message for the first time, forwards it to the same number bboesgy
picked with the same logic, irrespectively of the time this happens. Consider fo
instance two scenarios ofAR D CAST, executing over the same static overlay (as-
sume gossiping is currently stalled), starting from the same origin and edeh no
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picking the same gossip targets in both cases. If pair-wise latencies amediff

in the two scenarios, the order in which nodes are notified may changthebut
exact same set of nodes will have been eventually notified. In the cddei6f

CAasT, the set of nodes notified may change, but the same macroscopic behavior
is maintained.

6.6.1. Evaluation in a Static Failure-free Environment

We first evaluate and compare the two protocols side-by-side by coimgjcker
failure-free static environment.

We instantiated a network of 10,000 nodes in PeerSim. Each node wasgunnin
CycLON and, in the case of RGCAST, VICINITY too as described above, with
view length 20 for each protocol. Nodes were initially supplied with a giveglsin
contact in their @CLON views, forming a star topology. MINITY views were
initially empty. After letting the network self-organize for 100 cycles, we sthrte
posting messages and observing their dissemination.

We ran a number of experiments—not presented here—to investigate the ef-
fect of gossiping speed on dissemination. More precisely, we exploescelth-
tion between the gossiping period and message forwarding time, that is, the time
is takes a node to process a message and forward it to a neighbor. Aék ther
message forwarding time from zero to several times the gossiping period. We
recorded no effect whatsoever on the macroscopic behavior ofngisatons.

That s, although changing the message forwarding time results in difiexpat-
iments, with different nodes being reached each time and in a differeat, @id
macroscopic properties, such as the hit ratio, dissemination speed, asagmes
overhead, are preserved. It is not hard to see why. With respectadmi'y -
managed d-links, they are not even altered by gossip exchanges ermgtithal
sets have been obtained. With respect ¥wCoN-managed r-links, these are ran-
dom links anyway, irrespective of whether they are updated fasteocwarently
fixed. Consequently, forwarding a message along a few of them hapiamlent
effect regardless of whether gossiping runs at a high rate or isntlyrstalled.

Having verified this, we chose to disseminate messagesfesloverlays
in all experiments presented in this section. This choice was primarily made to
limit simulation execution to a reasonable time, considering the large number of
experiments we carried out. So, in each experiment, after self-orgarfiaidg0O
cycles the overlay was frozen and only then did disseminations start.

For each value of ranging from 1 to 20 (the €cLON view length), we
posted 100 messages from various nodes picked at random, resultitgfah &

2000 experiments for each protocol. Since the hit ratio approaches 208f%
for small values of, it is more meaningful to present the miss ratio instead, in
logarithmic scale. Figuré.6(a) presents the dissemination miss ratio averaged
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Figure 6.6: Dissemination effectiveness as a function of the fanout, fiiluae-
free static network of 10K nodes. (a) Miss ratio averaged over 108raxpnts;
(b) Percentage of 100 experiments that resulted in complete dissemination.

over 100 experiments for each valueFafRAND CAST and RNGCAST are repre-
sented by light and dark bars, respectively. The miss ratio ANIRCAST appears
to be dropping exponentially as a function of the fanBulNote that no dark bars
appear in this graph, as the miss ratio faNBRCAST is zero for any choice of
F. This comes as no surprise, asNRCAST's operation guarantees complete
dissemination in failure-free static networks.

Figure6.6(b) shows the percentage of experiments that resulted in a complete
dissemination, for each value &f. With respect to RNDCAST, it is interest-
ing to see that the transit from 0% to 100% follows a rather steep curve. For
instance, even with a fanout of 6, although the overall hit ratio was a®®\8%6
(Fig. 6.6(a)), none of the 100 experiments resulted in a complete dissemination.
With a fanout of 8, more than half of the disseminations were complete, while
by further increasing the fanout to 11 or higher we get only complete rdisse
nations. As far as RIGCAST is concerned, this graph validates once again that
disseminations are always complete, irrespectively of the chosen fanout.

Having seen to what extent messages eventually spread, we now takem clo
look at the evolution of dissemination hop by hop. Fig@réshows the progress
of all 100 dissemination for each protocols, for four different fanoukdore
specifically, it shows the number of nodes that have not yet been nptiféed
function of the hops taken.

Four main observations can be made by examining these graphs. First, for
a given fanout, all experiments of a protocol demonstrate very smalltizarsa
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Figure 6.8: Total number of messages sent, divided in messages setvytt-no
notified and already notified nodes.

in their progress with respect to the hit ratio and dissemination latency. This is
important as it shows that by selecting the appropriate fanout value, wieica

a system'’s dissemination behavior to a good level of accuracy. Secenthtice

a clear—expected—influence of the fanout on dissemination latency. igfherh
the fanout, the shorter a dissemination’s duration. Third, we observahéat
progress of disseminations for the two protocols is alike for a few initial hops
when the message has not yet reached a significant portion of the ket
protocols differentiate only after a substantial percentage of the nodesat
least 80%-90%) have been notified. This is a direct effect of the twinpots’
operation. By forwarding messages at randomNBRCAST hardly reaches any
more non-notified nodes, in an already saturated network. On the ggriiar
also forwarding messages along the ringh @ CAST exhaustively reaches out to
every single node. Finally, we see that the higher the fanout the more similarly th
two protocols disseminate messages. However, in all cases@AST reaches
the last node in fewer hops, demonstrating a lower dissemination latency.

The third metric we are interested in is message overhead. As we already
mentioned in Sectior.4.1, message overhead increases proportionally to the
fanout. Indeed, if a node forwards a newly received messagedther nodes
andNpi; nodes are reached in a dissemination, the total number of messages sent
is F x Npjt. Figure6.8 confirms this assessment. The shaded segments represent
the number of messages reaching nodes for the first time (noted as “viayie’s).

The striped segments represent the numbeeadfindant messagethat is, mes-
sages reaching already notified nodes, and therefore constitute aofvaste/ork
resources. As the network consists oKliodes, for a given fanolt a complete
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dissemination involvef x 10K total messages, out of which KGare messages
to “virgin” nodes, and the regF — 1) x 10K are redundant. The two graphs are
practically identical except for low fanouts, for whiclimRD CAST disseminations
do not reach all nodes. These graphs are illustrative with respect teaken the
fanout should be kept as low as possible.

6.6.2. Evaluation after Catastrophic Failure

For a system to be usable in a realistic environment, it has to cope with failares.
this section we explore the behavior of the two protocols in the face of aaphgtr
failures, that is, when a number of nodes suddenly break down.

We set up the experiments like the ones in the previous section, but before
starting the disseminations we kill a randomly chosen portion of the nodes. Tha
is to say, for each experiment we simulate a network of 10,000 nodes, &dftit s
organize for 100 cycles, and stall gossiping. We subsequently rentavelamly
chosen set of the nodes and examine dissemination over the remaining ones.

Unlike failure-free static networks where ongoing gossiping has no imfkeie
on dissemination after some point (see Sec@dhl), in the face of failures gos-
sipingdoeshave an effect, namely a positive one. Following a catastrophic failure,
gossiping allows the network reorganize itself, removing links to dead rematks
reestablishing valid ring links. In our experiments gossiping ma@sllowed fol-
lowing the catastrophic failure, exploring the ability of a partially damaged-over
lay to disseminate messages without giving it the chance to self-heal. Th@was
deliberate choice, aiming at testing a catastrophic failure’s worst-caserno#on
dissemination.

Figure 6.9 presents the dissemination effectiveness for both protocols after
catastrophic failures killing 1%, 2%, 5%, and 10% of the nodes. Similarly to Fig-
ure 6.6 in the previous section, the graphs on the left show the miss ratio, and
the ones on the right the percentage of disseminations that reached edl asd
a function of the fanouE. One can clearly see thatiftsCAST is more effec-
tive at disseminating messages in all experiments. A closer look at thedesgrap
shows that as the volume of the catastrophic failure grows larger, theeditie
between the two protocols’ effectiveness decreases. Howevar,védven 10%
of the nodes are Kkilled at once INlGCAST demonstrates an order of magnitude
lower miss ratio than RNDCAST. The lower miss ratio of RIGCAST reflects on
the significantly higher percentage of complete disseminations for smalltinou

Figure6.10shows the evolution of disseminations after a catastrophic failure
of 5% of the nodes, in accordance to Fig@.€ in the previous section. Once
again, the relation between the chosen fanout and dissemination latendfieslve
We also see that the evolution of disseminations exhibits small variations for a
given configuration, like in the case of a failure-free static network.
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Finally, Figure6.11illustrates the message overhead for dissemination in the
presence of a catastrophic failure of 10% of the nodes. Again, the tatatber
of messages is proportional to the chosen fanout. The lightly shaded stsgme
show the number of messages reaching nodes for the first time. The striped
represent messages reaching already notified nodes. Finally, tHg slhaakied
segments show the number of messages sent to dead nodes (andeHestfor
We see that the number of messages sent to dead nodes increasesftinbatly
protocols.

6.6.3. Evaluation under Churn

Apart from catastrophic failures, a system should also be able to deahudk
churn, that is, continuous node arrivals and departures. In this spetoexamine
the behavior of the two protocols under churn.

We evaluate the two protocols against the artificial churn model introduced
in Section3.5.2 In that model, in each cycle a given percentage (known as the
churn rate) of randomly selected nodes are removed, and the same raimber
ones join the network. Recall that this constitutes a worst case churarggen
as removed nodes never come back, so dead links never become valideaga
new nodes have to join from scratch. We tested both protocols with a chten r
of 0.2%, which, given a gossiping period of 10 seconds, corresgorttie churn
rate observed in the Gnutella traces by Saroiu efatdiu et al. 20013

Unlike experiments on static networks where a small number of cycles suf-
ficed to warm up the respective overlays (Sectiéris1and6.6.2, experiments
on dynamic networks required significantly more warm-up cycles. A netwbrk
10,000 nodes was let gossip in the presence of continuous artificial,atwotil
every node had been removed and reinserted at least once. Fope&lineents
this took several thousand cycles. Then the respective network wzenfrand
the resulted overlay was tested with respect to dissemination effectiveness

Figure6.12shows the miss ratio and the percentage of complete dissemina-
tions as a function of the fanout. AlthoughN&CAST results in a lower miss
ratio than RRNDCAST for low fanouts (2 to 5), it performs slightly worse for
fanouts 6 or higher. Also, none of the protocols achieves any complstendiisa-
tions, except when maximizing the fanout, in which cagel\RCAST appears to
be performing better again.

By looking at these quantitative graphs alone, one could come to the con-
clusion that RNGCAST is not any better—if not worse—thanaRp CAST when
node churn is at stake. A closer, qualitative examinationla€hgroups of nodes
contribute to each protocol's miss ratio will prove otherwise. As we will see,
RINGCAST’s miss ratio is almost entirely due to its poor performance at reaching
newly joined nodes, while it provides good dissemination guarantees to afl old
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Figure 6.12: Dissemination effectiveness as a function of the fanout, iprése
ence of node churn. In each cycle, a randomly selected 0.2% of the made
removed, and replaced by an equal number of newly joined nodes.

nodes.

Along these lines, we now investigate the relation between a nbfidime?,
that is, the number of cycles since it joined the network, and its chanceeaiireg
a disseminated message. Fig6ré3presents the distribution of node lifetimes
after the execution of several thousand cycles, when every nodebagsemoved
and reinserted at least once. In fact, Fig@r&3 plots the exact count of nodes
having a given lifetime, aggregated over 100 experiments, in log-log SGalen
that the network consists of 10,000 nodes and the churn rate is 0.2%hatyede
20 random nodes are evicted and 20 new are added. Thereforayrtienof
nodes having a given lifetime cannot exceed 20. For all 100 experimeyethey,
the number of nodes of a given lifetime ranges from 0 to 2000, hencernbe od
the vertical axis.

The distribution of lifetimes of nodes thatere not notifiedluring dissemina-
tion, is presented in Figur@.14 The distributions for two fanouts are shown, 3
(top) and 6 (bottom). It is clear that in all cases newly joined nodes (i.es, thia¢
joined up to 20 or 30 cycles ago) experience significantly higher miss ratio tha
other, older nodes. IRGCAST, in particular, results in quite more misses (notice
the log scale) than RNDCAST for these nodes. Nevertheless, for nodes that have
been in the network for at least 20 or 30 cycles, it demonstrates a stidkyan
lower miss ratio, almost negligible compared to that eNR CAST. For instance,
let us take a look at dissemination with fanout 6. AlthougR&CAST appears to
have a higher overall miss ratio thamRD CAST (Fig. 6.12), it hardly suffers any

2not to be confused with a nodegefield, as defined and used inv€LON
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Figure 6.13: Distribution of node lifetimes, summed over 100 experiments.

misses for nodes that joined at least 20-30 cycles earlier, contrargNO RAST.
Its miss ratio is entirely attributed to misses in newly joined nodes.

The implication behind this observation is worth notingiNRCAST proves
to be a better dissemination tool, except for the first few cycles after asnode
join. Once a warm-up period of a few cycles has elapsed, a node escaiiv
disseminated messages with very high probability. For a gossiping peridal of 1
seconds and a view length,. = 20, the warm-up phase amounts to a bit over 3
minutes. In applications where faster node joins is vital, new nodes caipgoss
at an arbitrarily higher rate for the first few cycles, to complete their wgom-u
phase correspondingly fast. However, this is a mere optimization and witlenot
considered further in this dissertation.

At this point, it is interesting to understand why new nodes experience more
misses, and why this phenomenon is more intense NWGRAST. Nodes are no-
tified through their incoming links. Their probability of being notified is tightly
related to how well they are known by other nodes. A new node joins theorletw
with zero indegree, and gradually increases it. Until a node’s indeg@Ehes
the average indegree of the network, it has less chance to receivesagaedlan
older, better connected nodes. This shows clearly in the aforementioaplisg

(Fig. 6.14).
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More specifically, a new node’s r-link indegree increases by one im efits
first few cycles, and takes approximatély. (here/cyc = 20) cycles to stabilize
to the average indegree of the network (whiclédg too). This is a property of
CycLoN, which manages r-links. So, forARD CAST, which depends solely on
CYCLON, we observe a steep decrease in misses for nodes of lifetimes 1 through
20, followed by an immediate stabilization thereafter.

On the other hand, RGCAST also depends on I2INITY to form the d-links
(i.e., the edges of the ring). However, a node does not benefit froomimg
VicINITY links until the appropriate incoming d-links are formed, that is, until
it eventually becomes known by its two direct ring neighbors. Generally this
does not happen instantly, but may require an undefined—yet small—nuwibe
cycles. Until then, a newly joined node relies only on its incoming r-links to
receive messages. During that phase, it is clear that newly joined nagles h
better chances to receive messagesAnRCAST, where messages are forwarded
to F r-links, as opposed to only — 2 r-links in RINGCAST. This explains why
RINGCAST exhibits more misses thanARD CAST for nodes that joined roughly
in the last 20 cycles (Fidg.14).

Note that the further curve in misses for lifetimes greater than 100 simply
follows the lifetime distribution of the general node population (Bid-3.

6.7. DISCUSSION AND FUTURE WORK

In this chapter we explored how gossiping can be applied to form ovedays
information dissemination. Our goal was to introduce and demonstrate the ben-
efits of hybrid dissemination systems, in comparison to probabilistic ones. How-
ever, our work can be extended in many directions.

Some applications may require higher reliability in dynamic environments.
Recall from Sectiorb.3that a bidirectional ring is a Harary graph of minimal cut
two. One way to increase reliability, would be to design gossiping protocdis tha
form Harary graphs of higher connectivity. Another, simpler way, isrganize
nodes in multiple rings, assigning them a different random ID per ring.oth b
cases, reliability would be improved at the cost of increased gossip traffic

Another potential optimization is proximity-based dissemination. Proximity
can have many faces, e.g., geographic distance, domain name, netpsrletm
In the protocols examined in this chapter, proximity is not taken into consider-
ation. For instance, a message originating in the Netherlands could follow a
path such as Netherlands Australia— Switzerland— Canada— Greece—
Uruguay— New Zealand. Obviously, such a path is far from optimal.

A straightforward way to partially deal with domain name proximity innR-
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nl.vu.cs_1234

nl.surfnet_3166 nl.vu.cs_7831

gr.upatras.ceid_8230

gr.upatras.ceid_1050 edu.umich.eecs_1011

edu.umich.eecs_6223

Figure 6.15: Nodes organized in a ring based on domain name proximity.

CAsT, is to incorporate domain names in thecWiTy similarity function. In
this version of RNGCAST, a node forms its ID by reversing its domain name
(country domain first) and appending a randomly chosen number. |.eD thieal
node at the cs. vu. nl domain of the Vrije Universiteit in Amsterdam could be
nl . vu. cs. 1234. Without any additional modifications, nodes naturally orga-
nize themselves in a ring sorted by domain name, and domains sorted by country
An example can be seen in FiglBelh

Finally, it should be noted that the protocols discussed in this chapteriare pe
fectly suitable forapplication-layer multicastingoo. In multicasting, a number
of multicast groupsre defined, and each message is associated with one of them.
All messages associated with a multicast group should be delivered to a nod
subscribed to that multicast group. The usage of dissemination protochigasu
RANDCAST and RNGCAST for multicasting is straightforward. Each multicast
group forms its own, separate dissemination overlay. Nodes subscriimply
joining the overlay(s) of the multicast group(s) of their choice. Finally, mgss
are multicast by disseminating them in the appropriate dissemination overlay.

In this research we have not considepedl-baseddissemination. We expect
it to significantly improve the efficiency of the protocol in terms of reliability.
However, additional issues have to be taken into account, such as thieepull
guency, the duration for which nodes maintain old messages, the sizefefsbuf
on nodes, etc. Pull-based dissemination is left as future work, as it coestau
natural extension of our current research.
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CHAPTER Y/

Semantic Overlay Networks

A lot of recent research on content-based P2P searching for &ilinghhas fo-
cused on exploiting semantic relations between peers to facilitate searcling. T
the best of our knowledge, all methods proposed to date sugggesiveways to
seize peers’ semantic relations. That is, they rely on the usage of thdyumgle
search mechanism, and infer semantic relations based on the queriesgrdced
the corresponding replies received.

In this chapter we introduce proactivemethod to build semantic overlays,
by means of the YCINITY/CYCLON topology construction framework presented
in Chapter4. By applying the appropriate selection function, peers with similar
content are clustered together. It is worth noting that this peer clusterdanis
in a completely implicit way, that is, without requiring the user to specify his
preferences or to characterize the content of files he shares.

As a historical note, the MINITY/CYCLON topology construction framework
presented in Chaptdr, was first conceived and materialized in the context of the
research presented in this chapter.

7.1. OVERVIEW

File sharing peer-to-peer (P2P) systems have gained enormous ftygdalar
recentyears. This has stimulated significant research activity in thefareatent-
based searching. Sparkled by the legal adventures of Napsterhalhehged to
defeat the inherent limitations concerning the scalability and failure resilieihce
centralized systems, research has focusedementralizedsolutions for content-
based searching, which by now has resulted in a wealth of proposalsdoito-
peer networks.

In this chapter, we are interested in those groups of networks in whicthsea
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ing is based on grouping semantically related nodes. In these networksgea n
first queries its semantically close peers before resorting to search radttaid
span the entire network. In particular, we are interested in solutions \waeran-

tic relationships between nodes are captured implicitly. This capturing isaBner
achieved through analysis of query results, leading to the constructiamoohl
semantic listat each peer, consisting of references to other, semantically close
peers.

Only very recently has an extensive study been published on searchdadth
peer-to-peer networks, be they structured, unstructured, or dfrddHfprm [Ris-
son and Moors 20Q6 This study reveals that virtually all peer-to-peer search
methods in semantic overlay networks follow an integrated approach totierds
construction of the semantic lists, while at the same time accounting for changes
occurring in the whole set of nodes. These changes involve the jointhigaving
of nodes, as well as changes in a node’s preferences.

The construction of semantic lists should result in highly clustered overlay
networks, reflecting users’ interests. These networks excel foclseg content
when nothing changes. However, in realistic, dynamically changing nkswibre
discovery and propagation of changes that may happgwheren the network
is of vital importance. For this reason, overlay networks should alscctefée
sirable properties of random graphs and complex networks in gerddbairf and
Baralasi 2002 Newman 2002 These two conflicting demands generally lead to
complexity when integrating solutions into a single protocol.

Protocols for content-based searching in peer-to-peer networkdstepa-
rate these concerns. In particular, we advocate that when it comessinuatiimg
and using semantic lists, these lists should be optimized for search onlyg+egar
less of any other desirable property of the resulting overlay. Insteadparate
protocol should be used to handle network dynamics, and provide datéon-
formation that will allow proper adjustments in the semantic lists (and thus leading
to adjustments in the semantic overlay network itself).

Along these lines, we employ thel®iNnITY/CycLON framework, which is
designed to separate the two aforementioned issues. T VY layer opti-
mizes the semantic lists for searching only. ThecCoN layer, offers a fully
decentralized service for delivering, in an unbiased fashion, informationew
events. We demonstrate the efficiency of our framework through exeesisnula-
tions using traces collected from the eDonkey file-sharing netweekgant et al.
2004.
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7.2. MODEL OUTLINE

In our model each node maintains a dynamic list of semantic neighbors, called
its semantic listof small fixed siz€sem, A node searches for a file in two phases.
First, by querying its semantic neighbors. Second, and only if no resufes we
returned from the first phase, the node resorts to the default seaottamism.

Our aim is to organize the semantic lists so as to maximize the hit ratio of the
first phase of the search. We will call this teemantic hit ratio We anticipate
that the probability of a neighbor satisfying a peer’'s query is propottimntne
semantic proximity between the peer and its neighbor. We aim, therefore, gt fillin
a peer’'s semantic list with itésem Semantically closest peers out of the whole
network.

We define the semantic proximity between two nodes as the number of com-
mon files they have. More formally, given two nodesandQ, with file lists Fp
andFq, respectively, their semantic proximity is defined as:

SemProkP, Q) = |Fp[ | Fol

The more common files two nodes have—therefore, the semantically closer they
are—the higher the value 8emProxEssentially, for each nodewe are seeking
peersQ1,Qy, ..., Qe for its semantic list, that maximize the sum:

fsem

_ZlSemPro((P, Q)

The VICcINITY selection function &, P, D) (see Sectiod.2.2 is consequently,
defined based on the proximity functi®@emProx It simply sorts the nodes if»
based on their semantic proximity to nddeand selects thke closest ones.

7.3. GOSSIPING FRAMEWORK

In the context of the WCINITY/CycLON framework, each node runs two pro-
tocols, MicINITY and CrcLON. Each protocol maintains a separate view of size
lvic and lye, respectively, and exchanges a different number of descriptors pe
gossip exchange (i.e., has a different gossip lengffy,and gy, respectively.
The semantic list defined earlier, consists of thg,neighbors of closest seman-
tic proximity among the ones in thel®INITY view.

For the sake of demonstrating the importance of certain pointSGMVTY ’s
design, we consider the following three versions oEMITY :
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RANDOM VICINITY This is the most naive of the three versions. When gossip-
ing, a node selectsrandomsubset of descriptors from itSI¥INITY view
to send to the other peer.

SELECTIVE VICINITY In this—better—version, a node selects and sends the
subset of descriptors from itsI®INITY view that isoptimalfor the recipi-
ent.

CoMPLETE VICINITY This is essentially the fully-fledgedi¥iNnITY protocol,
as defined in Chaptdr The sender selects and sends the descriptors that are
optimalfor the recipient, considering also descriptors from itacCoN—in
addition to its MCINITY —view.

In terms of the generic gossiping skeleton thatMiTy follows (reproduced in
Fig. 7.1for convenience), Figuré.2presents the formal description of the actions
taken by the thredooks The only hook in which the aforementioned versions
differissel ect ToSend() .

In addition to these three IZINITY versions, we also examine a fourth con-
figuration, namely RNDOM VICINITY withoutCyCLON. This is the only single-
layer configuration that we consider.

do forever {
wait (T tinme units)

do foreve
incr. all descriptors’ age by 1 rever {

receive buf _recv fromQ

?en;vseelQe(;trf)en?rv(i)ew buf _send « sel ect ToSend()
send buf_send to Q
put _send — sel ect ToSend() view «— sel ect ToKeep()

send buf_send to Q }
receive buf _recv fromQ
vi ew < sel ect ToKeep()

Active thread Passive thread

Figure 7.1: The generic gossiping skeleton foraConN and VICINITY .

7.4. EXPERIMENTAL ENVIRONMENT AND SETTINGS

All experiments presented here have been carried out with PeerSimean op
source simulator for P2P protocols, developed in Java at the Univef8itlagna [Peer-
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Hook Action taken

sel ect Peer () Select descriptor with the oldest age

sel ect ToSend()
RANDOM | Make a copy of the YCINITY view.

Add own descriptor with own profile and age 0.

Randomly seleatic descriptors.

SELECTIVE | Make a copy of the YCINITY view.
Add own descriptor with own profile and age 0.
Select the bed,ic descriptors foQ.

COMPLETE | Merge the MCINITY and CrCLON views.
Add own descriptor with own profile and age 0.
Select the bedl,ic descriptors foQ.

sel ect ToKeep() | Merge the MCINITY, CYCLON, and received views.
Select the bedc descriptors folP.

Figure 7.2: Implementation of the generic gossiping skeleton hooks, for the 3
VICINITY versions.

Sim).

To evaluate the construction of semantic overlays, we used real workstrac
from the eDonkey file sharing systeraDonkey, collected by Le Fessant et al.
in November 2003Fessant et al. 2004A set of 11,872 world-wide distributed
peers along with the files each one shares is logged in these traces. Aitotam
of 923,000 unique files is being collectively shared by these peers.

In order to simplify the analysis of our system’s emergent behavior, we de-
termined equal gossiping periods for both layers. More specificallye @ve
ery T time units each node initiates first a gossip exchange with respect to its
bottom (CrcLON) layer, immediately followed by a gossip exchange at its top
(ViciNniTY) layer. Note that even though nodes initiate gossiping at universally
fixed intervals, they are not synchronized with each other. Similarly toiquev
chapters, we study the evolutionary behavior in terms of cycles, whereyate
is a period ofT time units.

A number of parameters had to be set for these experiments, listed here.

Semantic list size {sen) In all experiments the semantic list consisted of the 10
semantically closest peers in thedWNITY view. As shown in Handuru-
kande et al. 2004a semantic list size dfsem= 10 provides a good tradeoff
between the number of nodes contacted in the semantic search phase and
the expected semantic hit ratio.
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View size (vic, £cyc) For the view size selection, we are faced with the following
tradeoff for both protocols. A large view size provides higher chantes
making better neighbor selections, and therefore accelerate the ctinstruc
of (near-)optimal semantic lists. On the other hand, the larger the view size,
the longer it takes to contact all peers in it, resulting in the accumulation of
older—and therefore more likely to be invalid—links. Of course, a larger
view also takes up more memory, although this is generally not a significant
constraint nowadays.

Considering this tradeoff, and based on experiments not furtherilegdcr
here, we fixed the view size to 100 as a basis to compare different configu
rations. When both \cINITY and CrcLON are used, they are allocated 50
view entries each.

Gossip length @vic, 9cyc) The gossip length, that is, the number of descriptors
gossiped per gossip exchange per protocol, is a crucial factor fantbent
of bandwidth used. This becomes of greater consequence in this applica-
tion, considering that a descriptor carries the file list of its respective.nod
So, even though exchanging more descriptors per gossip exchange allo
information to disseminate faster, we are inclined to keep the gossip lengths
as low as possible, as long as the system'’s performance is reasonable.

Again, for the sake of comparison, we fixed the total gossip length to 6 de-
scriptors. When both M INITY and CrCLON are used, each oneis assigned
a gossip length of 3.

Gossip period () The gossip period is a parameter that does not affect the pro-
tocol’s behavior. The protocol evolves as a function of the number of mes
sages exchanged, or, consequently, of the number of cycles elapked
gossip period only affects how fast the protocol’s evolution will take place
in time. The single constraint is that the gossip perfogdhould be ade-
quately longer than the worse latency throughout the network, so that gos
sip exchanges are not favored or hindered due to latency heteitygeke
typical gossip period would be 1 minute, even though this does not affect
the following analysis.

Figure 7.3 summarizes the settings the four configurations we experiment
with.
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Lyic | Qvic || Leye | Geye

RANDOM VICINITY 100| 6 - -
RANDOM VICINITY + CYCLON 50 3 50 3
SELECTIVE VICINITY + CYCLON 50 3 50 3
COMPLETEVICINITY + CYCLON 50 3 50 3

avg. semantic list quality

157

Figure 7.3: The four configurations we compare.
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Figure 7.4: (a) Convergence of sem. views' quality. (b) Evolution of s#ima
lists’ quality for a sudden change in all users’ interests at cycle 550.

7.5. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our framework in fiverdiite
settings.

7.5.1. Convergence Speed on Cold Start

To evaluate the convergence speed of our algorithm, we first test himkiyqu
it groups semantically related peers, when starting with a semantically-umawar
network.

The objective, as imposed by the proximity function, is for each node to dis-
cover thelsempeers that have the most common files with it. We define a node’s
semantic list qualityo be the ratio of the number of common files shared with its
currentlsemsemantic neighbors, over the number of common files it would share
with its £semoptimal semantic neighbors.

Figure7.4(a) shows the average semantic list quality as a function of the cycle
for four distinct configurations. In favor of comparison fairness Miee size and
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gossip length are 50 and 3, respectively, in each layer, for all caafigns. The
only exception is the first configuration, which has a single layer. In tiss,dhe
view size and gossip length are 100 and 6, respectively. All experimiants\ith
each node knowing 5 random other ones, simply to ensure initial conitgativ
a single connected cluster.

In the first configuration, RNDOM VICINITY is running stand-alone. The
progress of the semantic lists’ quality is rather steep in the first 100 cyalés, b
as nodes gradually concentrate on their very own neighborhood, gettkrgpw
new, possibly better peers becomes rare, and progress slows down.

In the second configuration, a two-layered approach consistingh@bRM
VICINITY and CrCLON is running. The slow start compared to stand-alone
VICINITY is a reflection of the smaller ZINITY view (3 as opposed to 6). How-
ever, the two-layered approach’s advantage becomes apparentwagsr Cr-
CLON keeps feeding the RN\DOM VICINITY layer with new, uniformly randomly
selected nodes, maintaining a higher progress rate, and outperformidepstae
VICINITY in the long run.

In the third configuration, SLECTIVE VICINITY demonstrates its contribu-
tion, as progress is significantly faster in the initial phase of the experiméig. T
is to be expected, since the descriptors sent over in eacBE&IVE VICINITY
communication, are the ones that have been selected as the semanticaltteloses
the recipient.

Finally, in the fourth configuration, @MPLETE VICINITY keeps the progress
rate high even when the semantic lists are very close to their optimal state. This
is due to the broad random sampling achieved by this version. In every commu
nication, a node is exposed to the best peers out oab@omones, in addition to
50 peers from its neighbor. In this way, semantically related peers thaigtdo
separate semantic clusters quickly discover each other, and subtgtiuetwo
clans merge into a single cluster in practically no time.

7.5.2. Adaptivity to Changes of User Interests

In order to test our protocol’s adaptivity to dynamic user interests, weexan
periments where the interests of some users changed. We simulated thd interes
change by picking a random pair of nodes and swapping their file lists in the
middle of the experiment. At that point, these two nodes found themselves with
semantic lists unrelated to their (new) file lists, and therefore had to gradually
climb their way up to their new semantic vicinity, and replace their useless links
by new, useful ones.

Once again, we present the worst case—practically unrealistic—szeofr
all nodes changing interests at once, at cycle 550 of the experiment of figu
7.4(a). The evolution of the average semantic list quality from the moment when
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Figure 7.5: Semantic hit ratio, for gossip lengths 1, 3, and 5 in each layer.

all nodes change interests, is presented in figudéh). The faster convergence
compared to figur&.4(a) is due to the fact that views are already fully filled up at

cycle 550, so nodes have more choices to start looking for good caadieimh-
bors.

Even though this scenario is very unrealistic, it demonstrates the powar of o
protocol in adapting to even massive scale changes. This adaptivertessto
the priority given to newer descriptors 8el ect ToKeep(), which allows a
node’s descriptors with updated semantic information to replace olderigtessr
of that node fast.

7.5.3. Effect on Semantic Hit Ratio

In order to further substantiate our claim that semantic based clusteriogsesd

P2P searching, we conducted the following experiments. A randomly sglecte
file was removed froneachnode, and the system was run considering proximity
based on the remaining files. Then, each node did a search on the file it was

missing. We measured the semantic hit ratio to be over 36% for a semantic list of
size 10.

Figure 7.5 presents the semantic hit ratio as a function of the cycle. Three
experiments are shown, with gossip lengthsdothlayers setto 1, 3, and 5. Note
that computation of the hit ratio for each cycle was made offline, withouttfig
the mainstream experiment’s state.
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7.5.4. Single Node Joins

To examine how fast new nodes join an already semantically clustered ketwor
we conducted a series of experiments witbMPLETE VICINITY. Each exper-
iment started with a network from which one randomly selected node had been
removed. After the network converged, we added the missing node and mea
sured the number of cycles it took to fill, respectively 50%, 90%, and 160%

its semantic list withoptimal neighbors. The respective cumulative distribution
function graphs are shown in Figures.

These experiments clearly show that the semantic list is rapidly filled with
optimal neighbors for the vast majority of the nodes, although some may take
considerably more time. It can also be seen that, although discowatibgst
neighbors may take arguably long for some nodes, it takes significantlr few
cycles to discovemostbest neighbors (CDFs for finding 50% and 90% of best
neighbors shown).

7.5.5. Behavior under Node Churn

To investigate the behavior of our algorithm as nodes regularly join ane leav
the network, we evaluateddMpPLETE VICINITY under different levels of node
churn.

For these experiments, we considered an initial converged network@d@.0
nodes. During each cycle we removedhodes and replaced them withother
ones. Every node in the system corresponded to one node in the gDioabeEs
(i.e., stores the same files), which contained a total of 11,872 nodes failega
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Figure 7.7: (a) The average number of optimal alive neighbors in the seerfisin
(b) The average number of alive neighbors in theITY view.

any moment in time a random subset of 10,000 out of 11,872 nodes was, activ
and the remaining 1872 nodes were down. The analysis of churn ratesédal-
world Gnutella tracesJaroiu et al. 2002003 shows that the set of active nodes
changes by approximately 0.2% every 10 seconds. In other wordsgi$suene a
cycle length of 10 seconds, a realistic valuerfas 20. We have also experimented
with larger churn rates, namely 1% and 5%, which correspond to a cyd¢iatu

of 50 and 250 seconds, respectively.

The results of these experiments are shown in Figur@) in which the av-
erage number of optimal alive neighbors in semantic lists under differemhch
rates is plotted. We see that as the churn rate increases, the semantic lists gen
erally remain polluted with links to non-optimal neighbors. This can be easily
explained by considering thel®INITY view (from which the neighbors for the
semantic lists are extracted). In Figut&(b), we see that under high churn the
view contains a relatively large fraction of links to dead nodes. As thestiira
links may refer to nodes with a large number of common files, they prevemtesta
lishing optimal links with nodes that are alive but share a smaller number of files
Moreover, when a node is reborn, it can take some time for other nodish w
now may have non-optimal semantic lists, to establish links to it (see’Fg.

7.6. BANDWIDTH CONSIDERATIONS

Due to the periodic behavior of gossiping, the price of having rapidly con-
verging and accurate protocols may inhibit a high usage of network nesou
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(i.e., bandwidth).

In each cycle, a node gossips on average twice (exactly once as an linitiato
and on average once as a responder). In each gos§ii2+ geyc) descriptors
are transferred to and from the node, resulting in a total traffic- 06 + Qcyc)
descriptors for a node per cycle. An descriptor’s size is dominated bfil¢he
list it carries. A single file is identified by its 128-bit (16-byte) MD4 hash ealu
Analysis of the eDonkey traceE¢ssant et al. 20Q4evealed an average number
of 100 files per node (more accurately, 99.35). Therefore, a nditeelgst takes
on average 1,600 bytes. So, in each cycle, the total number of bytefetradso
andfromthe node is 6400 (Qyic + Jeyc)-

For gvic = 9cyc = 3, the average amount of data transferred to and from a node
inone cycle is 38,400 bytes, while fgfic = geyc= 1, itis just 12,800. Maintaining
almost optimal semantic lists requires frequent gossiping to account fontine.c
Based on the traces, to achieve 90% optimality of the semantic list, the churn rate
must be limited to approximately 0.2%. Consequently, the gossip périndst
be equal to 10 seconds, which translates to an average bandwidthGbgtxé
per second foQyic = geyc = 3, and 1280 bytes per second Wuic = Jeye = 1.
However, if 80% optimality is acceptable, the gossip period can be redué&sd to
seconds, which yields 768 and 256 bytes per second, respectivialgtoa of 5
improvement traded for only 10% quality degradation.

We consider such a bandwidth consumption to be rather small, if not negligi-
ble compared to the bandwidth used for the actual file downloads. It is¢ingfa
small price to pay for relieving the default search mechanism from alid6t
the search load, which is often significantly higher (e.g., flooding or nardalk
search). Moreover, the bandwidth can be further reduced by emgltaéhniques
such as Bloom filtersgloom 197Q and on-demand fetching of file lists, instead
of associating a full file list with each node descriptor.

7.7. DISCUSSION AND RELATED WORK

To the best of our knowledge, all earlier work on implicit building of semantic
overlays relies on using heuristics to decidaichof the peers that served a node
recently are likely to be useful again in future queriggpanidkulchai et al. 2003
Voulgaris et al. 2001Handurukande et al. 20D4

However, all these techniques inhibit a weakness that challenges thkieap
bility to the real world. They all assumesgaticnetwork, free of node departures,
which is a rather strong assumption considering the highly dynamic natute-of fi
sharing communities. Also, it is not clear how they perform in the presehce o
dynamic user preferences.
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Moreover, as opposed to the existing solutions, our algorithm can, to seme e
tent, help against so-called free-riders in the P2P file sharing netwades pnd
Huberman 2000 Free-riders provide no files to be downloaded by other users,
but still use the network to obtain files that are interesting for themselves. Be-
cause of a lack of shared files|&INITY does not create any meaningful semantic
lists for such misbehaving nodes. This, combined with heuristics forbiddaag f
guent usage of the backup search algorithms, minimizes the number o$siutce
searches for free-riders, and consequently discourages thedieg practice.

Regarding proximity-based P2P clustering, our work comes close to the T-
Man protocol Jelasity and Babaoglu 20Pavhich has been developed indepen-
dently. Although there were significant differences with the original TalMeoto-
col, the most recent version shows a strong similarity with our work. An impbrta
difference remains that thel®INITY /CycLON framework offers higher flexibil-
ity in controlling bandwidth, by arbitrarily deciding on the number of descriptor
that need to be exchanged. This becomes important in this application, where
a node descriptor contains the node’s file list. More important, howeverais th
we show that the WINITY/CyCLON topology construction framework can be
successfully applied to forming semantic overlays for searching in peaszdn
file-sharing systems. Such an evaluation has not yet been done.before

Note that we chose a rather simple, yet intuitive proximity function to test our
protocol with. Our goal was to demonstrate the power of thelViTY /CyCLON
framework in forming a semantic overlay network based@@noximity function.

Even though much richer proximity functions could have been applied, ibwias
of the scope of this research.

Concluding, in this work we introduced the idea of applying epidemics to
proactively build and dynamically maintain semantic lists in a large-scale file-
sharing system. Specifically, we showed that theMITY/CyCLON two-layered
approach is the appropriate way to build such a service.
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CHAPTERS8

SuB-2-3uB: Purely P2P
Publish/Subscribe

Publish/Subscribsystems are designed to disseminate messayestd, from
nodes issuing eventpuiblisher3, to nodes interested in receiving evergsit{-
scriberg. Subscribers typically register with the system the type of events they
are interested in. Publishers simply post events. Subsequently, it is teen&/s
responsibility to deliver the right events to the right places. That s, amt eheuld

be delivered tall its subscribers ando one else

Consider, for instance, a house rental service. Prospective ssuiescribe
to the service by setting their search criteria. Such criteria may include tleeir pr
ferred neighborhood(s), the price range they are willing to pay, theldelitaum-
ber of bedrooms, sufficient area, etc. Some subscribers may evamssbmeof
the aforementioned criteria, should the rest be irrelevant to their decidome
owners, on the other hangublishannouncementsyentsin publish/subscribe
terminology) advertising their property for rent. The system is responfsibtie-
livering eachrental announcement &l prospective renters whose criteria classify
it as a potentially suitable choice.

In this work we address the problem of constructing scalable conteatbas
publish/subscribe systems. Subscriptions can range from a simple sgptemificf
merely the type of an event to a specification of the value ranges that atiseve
attributes can have. Notably the latter poses potential scalability problems.

Structured peer-to-peer systems can provide scalable solutions to fsudbistribe
systems with simple subscription patterns. For complex subscription types their
applicability is less obvious. In this chapter, we presenB-2-SuB, a collab-
orative self-organizing publish/subscribe system deploying an umsteatover-
lay network. $B-2-SUB relies on an epidemic-based algorithm in which peers
continuously exchange subscription information to get clustered to similas.pee
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In contrast to many existing approaches,ss2-SuB supports both value-based
and interval-based subscriptions. Simulations 0B&-SuB on synthetic and
reusable workloads convey its good properties in terms of routing eftigiésur-
ness, accuracy and efficiency.

A shorter version of this chapter appearsVolilgaris et al. 200p

8.1. OVERVIEW

Peer-to-peer (P2P) systems have been identified as the key to scalalility an
their self-organizing properties make them natural candidates for $ma@e-pub-
lish/subscribe systems design. Several efficient implementations of P2P topic
based publish/subscribe systems have been propGsettp et al. 200Banerjee
et al. 2002. Unfortunately, it is not obvious how to devise a scalable P2P solution
for content-based publish/subscribe systems.

Structured P2P overlayfkpwstron and Druschel 2001Ratnasamy et al.
20013 Stoica et al. 200[Lhave often been favored over unstructured ones to
implement content-based publish/subscribe systems. The idea is to map the at-
tribute space of the latter to the identifier space of the former. At one extreme,
each attribute is associated with one specific peer. Although this provii=eref
routing to interested subscribers, peers hosting popular attributesieké/qver-
loaded. At the other end of the spectrum, in an attempt to discretize the r@inges
attributes, a peer is made responsible for a spe@tficibute, value)pair. In this
case, attaining a scalable implementation for range subscriptions becorhes pro
lematic.

In this work, we step away from structured overlays and propose adeHy
centralized and self-organizing approach based on unstructureldys/éo deal
efficiently with both exact and range subscriptions. Key to our approabith
is called B-2-SuB, is that subscribers to the same events are automatically
clustered. 8B-2-SuB leverages the overlapping intervals of range subscriptions
and creates an unstructured overlay reflecting the structure of the t&tsibace
and that of the set of subscriptions. Once subscriptions are clustereuseve
directly posted to the proper cluster where they are efficiently disseminated.

A key issue is that 8B-2-SuB is highly reactive to changes in the set of sub-
scriptions. To this end, it deploys an enhanced epidemic protocol bastto
VICINITY and FEER SAMPLING SERVICE topology construction framework, to
continuously cluster subscribers based on their subscriptions. Clgsiehased
on a proximity metric in the attribute space, which results in nodes of similar
subscriptions clustering with each other. A similar process is followed to navi-
gate publishers to clusters of matching subscriptions. Publishers psageeslily
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across the network according to the same algorithm and proximity metric, even-
tually reaching the cluster that contaiesactlythe subscribers which the event
should be delivered to. Moreover, within such a cluster, subscribberkasely
organized into a distributed data structure that enables efficient eveetdisa-

tion.

8.2. ISSUES IN PUBLISH / SUBSCRIBE SYSTEMS

A number of issues are of interest when designing a publish/subscetansy
It is important for the remaining of the chapter to list the most significant issues
that characterize the quality of a publish/subscribe system.

Hit ratio The hit ratio is defined as the percentage of subscribers that receive a
event, over the total number of subscribers interested in it. It is a metric of
the penetration of events. Ideally, an event should be deliveralll imdes
interested in it (hit ratio 100%), or at least to as many of them as possible.

Spam ratio The spam ratio is defined as the percentage of subscribers that re-
ceive an event although it wast matching their subscriptions, over the
total number of subscribers interested in the event. Delivering an event to
subscribers not interested in it wastes network and processing cesour
Therefore, the spam ratio should be kept as low as possible, ideally 0%.

Dissemination speedThe speed at which an event dissemination completes. The
two main factors governing dissemination speed are (a) the average delay
in forwarding messages (processing delay on nodes plus networkygtenc
and (b) the number of hops messages take to reach the most distant nodes.
In our evaluation we focus on the latter factor.

8.3. SYSTEM MODEL

In brief, we consider a conjunctive attribute-based publish/subscyiters
with N floating-point attributes that supports subscriptions on batttattribute
values andanges

More formally, we assume a fixed numhberof attributes,Ay, ..., Ay, With
values inR (the set of real numbers). Attributes can alternatively be assigned val-
ues of any type that can be directly mappe®{such as integers, enumerations,
boolean values, or strings.

Subscriptions are conjunctions of predicates on one or more attributes. A
predicate can denote either an exact value (éyg= V), or a continuous range
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Figure 8.1: A set of subscriptions and an event.

of values (e.9.A € [Vimin,Vmax)- A subscription can have at most one predicate
per attribute. Multiple exact values or multiple noncontinuous subranges on a
single attribute can be modeled as multiple separate subscriptions. Attributes not
referred to in a subscription (wildcards) are assumed to cover the wtiokaige
space, that is, their value is indifferent to the subscriber. An exampkespbon

for a 5-attribute system iS: (Aq, Az, Az, A4, As) = (*, 30, *, x, [2.2,2.7])

Events areN-sized vectors specifying exact values & attributes. An ex-
ample of an event for a 5-attribute systemBs (A1, Az, Az, A4, As) =
(5, 3, —2.5, 20, 1.87).

In the remainder of this chapter, we will consider range subscriptions, i.e.,
subscriptions composed of a set of predicates, each specifying @ oénglues.
Exact-value predicates are considered as a special, and simpler,f casange
subscription.

Also, nodes whose subscriptions match a particular event will be rdfesre
as the event'snatching subscribers

8.4. LB-2-SuB IN ANUTSHELL

SuB-2-SUB is an autonomous, self-organizing P2P event-notification system
that supports multi-attribute subscriptionsutonomousmplies that the dissem-
ination of events to all interested nodes is accomplished by the cooperation of
interested nodes themselves, eliminating any dependency on relay serdecs
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Figure 8.2: Partitioning of an one-dimensional event space in homogesebt
spacesH.

icated elementsSelf-organizingefers to the fact that nodes organize themselves
in a structure that enables their cooperation for event dissemination in a com-
pletely decentralized manner. The self-organizing propertyusf-3-SUB relies

on the use of the \MINITY/CyCLON topology construction framework to cluster
peers of similar subscriptions. Its efficiency relies on the fact that queirig
subscriptions are leveraged so tliatonly interested subscribers are reached by
an event andii) subscribers do not miss any event matching their subscription.

Clustering overlapping subscriptions SuB-2-SuB forms an unstructured over-
lay network in which each peer is associated with one subscription. Multiple
subscriptions are handled by running multiple virtual peers on a singlagalys
node. In the context of a customized version of the™ITY/CyCcLON frame-
work, peers periodically exchange information to discover peers with sisular
scriptions to form clusters with. Note that the resulting clusters do not have e
plicit boundaries. Figur®.1 depicts an example of a set of subscriptions for a
single attribute scheme. Each line represents a range subscription. idlbm&p
algorithm ensures that peers are automatically clustered so that wherm=in ev
specifying a value for attribute (e.g.,e: (a= 10) in Figure8.1) is published, all
interested subscribers,(C, andD in Figure8.1) get it.

Partitioning the event space A key observation underlying@-2-SuB’s de-
sign is that every pedP’s subscription specifies aN-dimensionalrectangular
subspacesp C RN, which we refer to a®’s subscription subspaceAs a conse-
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guence, we are interested only in those events that fall Snto J Sp. To sim-
plify the Sus-2-SuB model, weconceptuallypartition § into disjoint subspaces
H, Ho, . .., which we naméomogeneous subspaces

Us=s

and
Vi#j: HNH =0

All events belonging to a given homogeneous subsgétgave the exact same
set of matching subscribers (hence the ndnmmmogeneousor these subspaces).
More formally:

ViR [N £ 0] = [ C 5]

Furthermore, we demand that the set of homogeneous subspaiseminimal:
there is no partitioning with fewer parts that can satisfy the aforementiorred co
straint.

The notion of homogeneous subspaces provides a level of abstraten:
mits us to think in terms of groups of events—that have the same set of matching
subscribers—rather than for single events individually. Figuesshows how the
event space of the example presented in Figutés partitioned in homogeneous
subspaces.

The ultimate goal in 88-2-SuB is, for each homogeneous subspdageto
cluster its nodes in such a way that an eveat#4 can be efficiently disseminated
to all of them. Essentially, we want to maintain a connected overlay (as we will
see, a bidirectional ring) for every homogeneous subspfcé that holds, then
any possible event in the system can be efficiently disseminated to all its matching
subscribers. To this end, we let peers periodically exchange theirrgotins. If
two peerd? andQ note thatSpg = Sp NS # 0, they will record this fact and main-
tain references to each other (how this is done is described below) x&mpée
in Figure8.2, peersP andQ satisfy the above condition for a given range and get
connected. When discovering a third pdrwith Spor= SpNSq NSk # 0, peers
P, Q andRwill further organize into a structure associated witiyr such that an
evente € Spor Will be efficiently disseminated to the three peers. BBtandQ
will still maintain references to each other, but now for the subspage- Spor,
if not empty. FigureB.2illustrates this process: whehjoins the network it gets
connected td® andQ for the shaded range whilRe andQ remain connected for
the hatched range.

The publisher of an ever joins the overlay identically to subscribers, and
will eventually find the sef{ wheree belongs to. At that poing is disseminated
to the members associated wit). Note that, provided is indeed partitioned
along the lines we just describeglwill reach only the nodes that are interested
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in it, and no others. This method of letting publishers locate the relevant sub-
scribers is primarily elegant, but not necessarily efficient. Higher effagiecan

be achieved through, for example, greedy routing algorithms. We doonstaer
such alternatives in this dissertation.

8.5. THE SuB-2-SuB DISSEMINATION OVERLAY

In Chapter6 we explored epidemic schemes for group communication. Such
schemes provide strong probabilistic guarantees for the disseminationsHgess
to all members of an overlay, demonstrating tolerance to churn and node failures
Here we are looking at employing one of these techniques, namblyd dissem-
ination and the RNGCAST algorithm (see Sectio.5), in selectivelydisseminat-
ing events to all their matching subscribers.

What differentiates dissemination in publish/subscribe systems from the gene
ric dissemination model, is that there issingleset of target nodes. Instead, each
event needs to be disseminated to a different set of nodes, consistiteggesient’s
matching subscribers. Group communication, therefore, should be dpelica
any possible set of matching subscribers.

This is exactly what lies in the core ofuB-2-SuB: A dissemination over-
lay that enables group communication amax@ctlythe matching subscribers of
any given event, independently. Considering that events within a homoggneou
subspace have the same set of matching subscriberspth® $uB dissemina-
tion overlay should enable group communication among nodes with subscsiption
intersecting?;, for every#4 independently.

Let A; denote the set of nodes whose subscriptions intersect homogeneous
subspacé. In Section6.5.1we saw that organizing a group of nodes inia&-
CasT overlay, that is, a bidirectional ring augmented by random shortcutslema
inexpensive and efficient dissemination of messages among them. The major is
sue that $B-2-SuB needs to solve is to organize the nodesathset 4§ in
a RINGCAST overlay. Along these lines, each node is equipped with a random
sequence IDuniformly drawn from a large identifier space. If hodesand Q
are both inA§, and there is no other node i whose sequence ID lies between
those ofP andQ (using modulo arithmetic), they will keep a link to each other.
These links, known asng links, organize nodes of any given homogeneous sub-
space in a bidirectional ring. In addition to ring links, nodes also maintain links to
random other nodes in the same 3¢t known as(random) overlapping-interest
links. Figure8.3 shows the links forming a ring for each homogeneous subspace.
Random overlapping-interest links are omitted for clarity.

Often, the subscriptions of two nodes may overlap in multiple homogeneous
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Figure 8.3: The conceptual8-2-SuB dissemination overlay. For each homoge-
neous subspace nodes are linked in a ring structure. Onhjnignénks are shown.
Random overlapping-interebbks are omitted for clarity.
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Figure 8.4: The actual®-2-SuB dissemination overlay. For any possible event
all matching subscribers are linked in a ring structure. However, no multijde lin
between the same two nodes are kept. Onlyrthg links are shown.Random
overlapping-intereslinks are omitted for clarity.
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Random links Overlapping-interest links Ring links
(PEER SAMPLING SERVICE) (VICINITY) (VICINITY)

Figure 8.5: The three sets of links each subscriber should maintain. (caeszies
denote the areas where links of the respective type are appropriatbgfgiven
subscriber).

subspaces, leading to multiple links between them, as shown in Rag8irdn
reality, no multiple links are allowed between two nodes. This results iachel
SuB-2-SuB dissemination overlay for our example, shown in FigBir

These observations lead to the following three types of links:

Random links These are links to randomly selected peers from the whole net-
work. They are needed to maintain the network connected, so that pub-
lishers and new subscribers can navigate to their appropriate homageneo
subspace irrespectively of the node they join the network through.

Overlapping-interest links They reflect the similarities between subscriptions
and are used to send published events to random other interestedgmekrs (
to speed up event dissemination).

Ring links These links organize nodes of each homogeneous subgfdnea
ring, ensuring that events belongingtoreach all matching subscribers by
means of the respective ring.

Figure 8.5 depicts these three types of links, for a set of subscriptions over one
attribute.

8.5.1. Spreading Events

Given the dissemination overlay described above, publishing events is ke simp
task. All a publisher has to do is locaa@y one matching subscriber for its po-
tential event(s), and deliver the event(s) to it. From that point on, dissdiommis
taken care of by the matching subscribers themselves.
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Subscribers disseminate events by means of thasRAST algorithm, pre-
sented in SectioB.5.1 In particular, we assume that each subscriber is running
a daemon thread listening to incoming events and forwarding them accordingly
The daemon thread is activated when a node receives an event.ldidiesup the
node’s recent event history. Previously seen events are ignored.eMents are
delivered to the application, and subsequently forwarded in two respeids an
event is forwarded to the node’s two adjacent neighbors (if any) dlomgvent’s
ring. Second, it is forwarded along a small number (typically only one oy tfo
additionalrandom shortcutsRandom shortcuts are links to matching subscribers,
picked randomly among the overlapping-interest neighbors that match ttics pa
ular event (if any). Obviously, a node does not send an event bacy the same
link it received it through.

Four facets of the dissemination algorithm are worth noting, namely its behav-
ior with respect tdnit ratio, propagation speedgspam ratig andload balancing

Hit ratio and propagation delay are dealt with by ring links and randont-shor
cuts, respectively. In brief, forwarding along ring links guaranteaselients are
sequentially propagated tl corresponding matching subscribers, achieving a
hit ratio of 100%. Random shortcuts to matching subscribers are followkd o
to boost propagation speed. Indeed, following the ring links alone regyliirear
time to cover all interested nodes. By each node forwarding incoming etgents
as few as one random matching node, dissemination completes in close to loga-
rithmic time. A thorough evaluation of thelRGCAST algorithm’s efficiency is
presented in Sectiod.6.

Spam is entirely out of the question in this dissemination algorithm. Clearly,
no node forwards an event to another node, unless the latter is inteneshed
event. The only case a node may receive spam messages, is if it hatyrece
changed its subscription, and its updated subscription has not yetl spreagh.

Finally, with respect to load balancing, two points are worth emphasizing.
First, no dissemination load is imposed on irrelevant subscribers. Sdoadds
evenly balanced across matching subscribers, as each of theneseanaievent
once or a few more times, and upon first reception forwards it to the sanie sma
number of nodes: up to two adjacent neighbors, and a few random ones

8.6. BUILDING THE DISSEMINATION OVERLAY

From our previous discussion, the publish/subscribe problem hasndyide
turned into atopology constructiorand maintenanceproblem. We handle it by
means of the WCINITY /CyCLON framework for topology construction, presented
in Chapter4.
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Figure 8.6: The 8B-2-SuB Architecture.

The SuB-2-SuB architecture explicitly sets a dual goal. Apart from random
links to maintain connectivity, subscribers are required to dynamically maintain
two types of links: overlapping-interest links, and ring links. Although theady
suggests employing two instances atWiITY, it is not the sole reason for doing
Sso.

Discovering nodes with overlapping interests comprises a filtering over all

participating nodes, based on a single criterion: relevance of subsnspis we

will see, this filtering can be directly handled byd/NITY, given the appropriate
selection function. Selecting a node’s ring neighbors is more specificndexyto

be of overlapping interest, but in addition we also need to consider theieseq

ID. Selection of ring neighbors, thus, comprises a further filtering ovevde’s
overlapping-interest neighbors. Consequently, discovering a siogtetlapping-
interest neighbors is a crucial step to discovering its ring neighbors too.

Given the aforementioned design considerations, we combine two instances
of VICINITY on top of a single BER SAMPLING SERVICE instance, resulting in
the architecture depicted in Figuses. Each layer is a gossiping protocol in itself,
communicating directly with the respective layer of other nodes, as showg-in F
ure8.7. The sole interaction between layers is by means of link recommendations,
from lower to higher layers.

Note that ring links are indifferent to publishers. Indeed, publisheitsl bu
views for only random and overlapping-interest links, and gossipdgye@s fast
as they can) to readiny matching subscriber, independently of its sequence ID.
As we will see in Sectior8.7, this permits them to find a matching subscriber in
a very small number of steps. If more steps than a small threshold elapge, the
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Figure 8.7: Layered communication. Each layer of a node gossips esatjusi
to the respective layer of other nodes. Interaction between layerdtigtexs to
passing around links within a single node.
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can safely assume that no subscriber in the whole network is interestedrin the
event(s).

In the following three sections we will explain in detail the operation of each
layer and the way they interact.

8.6.1. Building Random Links

Random links are handled by the bottom layer in our design, which conéisis o
PEER SAMPLING SERVICE, studied in Chapte3. Its purpose is twofold. First, it
keeps the whole set of subscribers connected in a single partition, evengres-
ence of churn or large scale failures. Connectivity is crucial to let pudgsand
new subscribers find their way to their appropriate neighborhood sedspéc-
tively of wherethey initially joined the network. Second, it constitutes a source
of links selected uniformly at random from the whole network. Random liftks
not play a direct role in event dissemination, but are fundamental forNvTy

(in this case for both instances of it), as we have seen in Chépter

8.6.2. Building Overlapping-Interest Links

Overlapping-interest links are discovered by the middle layer, consistitigeo
VICINITY protocol. The operation of MINITY has been studied in Chapter

Of particular interest is the selection function we apply here. It is based on
the notion ofsubscription distangevhich we introduce as a measure of subscrip-
tion similarity. The subscription of a node defines an N-dimensional rectangle
which we will refer to as ithyper-rectangleWe define the distance between two
subscriptions to be 0 (zero) if they intersect (overlapping-interestsjpar the
Euclidean distance between their hyper-rectangles otherwise.

More formally, the distance between two subscritfeendQ with subscrip-
tions

subscriptionoP: A € [p"" p™, i=1...N

subscription oQ: A e [¢"", g™, i=1...N

is given as follows:

0 , overlapping;

distancéP, Q) =

\/zi (min{ pMax gmax} — max{pm'”,qimi”})2 , honoverlapping.
(8.1)
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Let us now take a look at the incentives behind this distance function. By
applying it in selecting neighbors, nodes concentrate on acquiring linksdesn
of gradually closer, and eventually overlapping interests. Howeveaureference
is made among different nodes of overlapping interests, making all of thaailg
likely to be kept or discarded from thes®INITY view during gossiping. This way,
a subscriber gets to eventually “see” all nodes with some overlappingstgere

8.6.3. Building Ring Links

The top layer in our architecture (Figu8e) is in charge of building ring links. It
consists of the YCINITY protocol too, albeit with a small modification: it adopts
a view ofvariablelength, as opposed to fixed length in the standard version of the
protocol. This reflects the variable number of ring links nodes maintain.

It is worth noting that the top layer receives input from both lower layers,
as can be seen in FiguBe6. Indeed, when two nodes gossip in the context of
the top layer, each of them merges all its views (i.e., including the ones for the
random and overlapping-interest links) into a single container. It suiesely
applies the VcINITY selection function (described below) on this container to
select the nodes that are eligible as ring neighbors for the other nadieeads
them accordingly. Similarly, when receiving links from the other node, igeer
them with its current views from all three layers, and applies the selectimmifun
again, this time to select ring links for itself.

An essential element for building ring links is the associatedMTY selec-
tion function. The selection functioS(k, P, D), goes through the node descriptors
in set?D, and selects the ones that qualify as ring links for nBd&lore specif-
ically, it goes through the nodes (P in increasing sequence ID order (starting
from the ID of P and cycling when reaching the maximal sequence ID) and se-
lects a node only if its subscription interse&Xs subscription subspace at some
region not yet covered by already selected subscribers. Thisgzasehen re-
peated, but now iterating in decreasing sequence ID order. Note tragin@ent
k, which normally determines the number of nodes returne& by completely
ignored by this selection function. The pseudocode of the selection fanistio
shown in Figure8.8.

Another point deserving illumination is the representation of the not-yetredve
subscription subspace 8f and the way we subtract hyper-rectangles from it. It
is represented by means of a new type, caligferspace A hyperspace is, in
turn, represented by a collection of hyper-rectangles, constitutingitgponents
Subtracting a hyper-rectangle from a hyperspace consists in sedjyesutidract-
ing it from each—interesecting—component hyper-rectangle of therbypee.

A hyper-rectangle intersects a hyperspace, if it intersaayof the hyperspace’s
component hyper-rectangles. The pseudocode for the hyperdpasgalong with
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function S(k,P, D) // VICINITY selection function for ring links
var uncovered HyperSpace
var selected set of Node init0
for directionin {ascending,descendiphg
uncovered— PhyperRect
foreachQ € 9 from P.id by direction
if Q.hyperRecintersectsuncoveredhen
uncoveredsubtractHyperRed{{.hyperRect)
selected— selectedt {Q}
end if
end foreach
end for
return selected

Figure 8.8: The VCINITY selection function for building ring links, in pseu-
docode. It selects ring links for nod® out of the set of node descriptof3.
Argumentk, determining the number of nodes that should be returned in the stan-
dard version of VCINITY, is not taken into account.

its method for subtracting hyper-rectangles, is presented in F&jre

Let us, finally, explain how we subtract hyper-rectangles from e#foéroTo
subtract hyper-rectanglefrom v, we sweep along every dimension, one at a time,
extracting fromv chunks (smaller hyper-rectangles) that do not intersectuiith
that dimension. We stop after going through all dimensions. The outcome of
the subtraction is the collection of chunks we have extracted, which edentia
constitute a hyperspace— u. Subtracting another hyper-rectangle is done by
subtracting it from each component hyper-rectangle of hyperspaag as de-
scribed in the previous paragraph. The process of hyper-rectanigteaction is
illustrated in a two-dimensional example in Fig@&40

8.7. EVALUATION

In this section, we evaluateu8-2-SuB by simulation under synthetic sub-
scription workloads. We focus on four key issues: overlay constmuchiib ratio,
propagation speed, and complexity for publisher and subscriber jgiasn &tio
is not considered, as it is fundamentally eliminated by our design.

We built and evaluated&-2-SuB on PeerSim, an open source Java simula-
tion framework for P2P protocol®eerSinp
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classHyperSpace
var componentsset of HyperRect

method subtractHyperReat
foreachv € components
if uintersects/ then
components— components-v
components— components v.subtract()
end if
end foreach

Figure 8.9: The HyperSpace class.

8.7.1. Experimental Setup

In lack of real-world subscription datasets, we generated synthetiasrieows.
N-attribute subscriptions were representedNasanges in[0...1], one for each
attribute. A range’s center was chosen following the respective attrddnterest
distribution A range’s width was determined by the attributsislth distribution

In each experiment we applied the same interest distribution kbattributes:
eitheruniformor power law The former represents a natural unbiased workload.
The latter, known agipf, is admitted to be a good approximation of interest popu-
larity and results in subscription sets closer to expected social behaihdriting
popular and rare values. It also results in more interesting experimeritgras
is higher overlap around the “center” of the interest space, and lowerds its
edges, resulting in rings of various lengths. The width distribution was fixed to
power lawcentered at O, witla = 4, to account for both wide range and (nearly)
exact subscriptions.

In evaluating $B-2-SuB we considered schemes of up to five attributes. The
number of subscribers was fixed to 10,000 for all experiments.

We tested each experiment’s effectiveness by observing the dissemioftion
10,000 test events. Test events were picked at random, ensuringreadiad at
least two matching subscribers, to make dissemination meaningful.

Finally, with respect to the RGCAST dissemination algorithm, nodes for-
warded events to theiworing neighbors, and tonematching subscriber (if any)
chosen from their overlapping-interest neighbors. That is, events dissemi-
nated with a fanout of three.
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(&) We want to subtract rectangle (small, with
dashed outline) from rectangiglarge, shaded).

(b) We first sweep along thredimension, detaching
parts ofv not intersecting withu. Rectangley is split
in rectangless, v, andvs. Note that the overlap
with uis isolated in a single new rectangle, which
matchesai in thex dimension.

(c) We, then, concentrate on, the only rectangle
that still intersectal. We sweep along the dimen-
sion, splittingv» in rectangless,q, Voo, andves. The
overlap withu has now been isolated to rectangle
V2. Note that at this point we have looped through
all dimensions. Consequently, the rectangle still in-
tersectingu (v22) constitutes an exact overlap of
We, therefore, remove it altogether.

(d) The set of rectangles we are left with, constitute
the outcome of the subtractian- u.

Figure 8.10: Example of rectangle removal in a two-dimensional spacet Firs
sweeping along the and then along the dimension. Generally, in ai-
dimensional space, we would carry on the same process fdrdithensions.
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Figure 8.11: Construction of the rings in time. Light bars show the percentag
of ring links already in place. Dark bars show the percentage of ringsatiea
complete. 10K nodes.

8.7.2. Jump-starting SUB-2-SUB

We first test the efficiency of our algorithm in jump-starting@es2-Sus overlay

from scratch. Nodes started gossiping at the same time, having been initiated
with a single random link in their €cLON views, ensuring the overlay formed a
connected graph. We recorded the topology evolution by keeping statisgcs

the ring links associated with each of the 10,000 test events.

Figure8.11shows the evolution of ring construction per cycle, for four exper-
iments. We can see that after 40 cycles, all rings are fully set up.

Having confirmed that rings are constructed in a small number of cycles in
all cases, the remaining evaluation focuses on a single experiment, namely the
one with three attributes and power law interest distribution. This experiment is
the most interesting one for testing event dissemination and propagatiash, spee
as the rings it involves range from very small (2 subscribers) to quite 46
subscribers). In five-attribute schemes, rings are trivially short §8&cribers)
due to the very large subscription space. The distribution of ring lengttesllfo
experiments is depicted in Figugel2
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Figure 8.13: Event dissemination. Light bars show the hit ratiotor-complete
disseminations. Dark bars show the percentage of disseminations thatomere
plete (events delivered to all their matching subscribers). 10K nodesijliutes;
power law interest distribution.

8.7.3. Event Dissemination

As mentioned earlier, events are disseminated by means of th@CAST dis-
semination algorithm (Sectiof.5.1). Nodes forward events to theiwo ring
neighbors, and t@ne matching subscriber picked randomly from the view of
overlapping-interest neighbors.

Figure 8.13 presents the performance ob&-2-SuB with respect to event
dissemination. It is worth noting that, by comparison to Figidel(upper-right),
complete dissemination is achieved ewsforeall rings are in place. This comes
as a result of (also) forwarding across random overlapping-iritim&s.
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Figure 8.14: Hops to complete event dissemination, as a function of the number
of matching subscribers (ring length). 10K nodes; 3 attributes; poweinkanest
distribution.

8.7.4. Propagation Speed

We now examine the speed, in terms of the number of hops at which evesdsi spr
We are specifically interested in the number of hopscfumplete dissemination
that is, the number of hops elapsed from the moment a publisher delivevean
to some matching subscriber, until the event reaches the last one of them.
Figure8.14b) shows the number of dissemination hops as a function of the
number of subscribers matching the respective events. Clearly, the nainbe
hops increases with the number of matching subscribers. However,essila r
of short-cutting the rings in disseminating events, this relation is of logarithmic
fashion.

8.7.5. Single Node Joins

Jump-starting 8B-2-SUB comprises a worst-case scenario, as the whole overlay
starts from a completely non-clustered state. We now take a look at the ather e
of the spectrum, measuring the number of cycles it takes a single node to join an
already converged overlay.

Starting from the converged state of our experiments, each subscriser w
individually wiped out of the network. That is, it was removed from the oekw
along with all links to it. Then it was let to rejoin, and the number of cycles to
fully rejoin was recorded. Joining the network involves (a) building appate
ring and overlapping-interest links to other nodes, and (b) becomingrkiy
other nodes. A node was considered to have fully rejoined the overlagaihits
ring links (i.e., outgoing and incoming ones) were in place. The number &dxyc
it took to rejoin the overlay gives the distribution shown in Fig8réa
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Figure 8.15: Distribution of cycles it takes subscribers and publisher&to jo

For publishers, on the other hand, joining is a simpler task, as they are in-
terested only in reachingny matching subscriber, independently of its sequence
IDs. Figure8.15also shows the distribution of cycles it takes publishers to join,
starting from a random node. Itis worth noting that all 10,000 publisherssted
joined in five or less cycles. This is important, as a publisher can safelynassu
there is no subscriber matching its event(s) after a low threshold of cyaesr{
the order of 10 or 20).

8.8. RELATED WORK AND CONCLUSIONS

Scalability of peer-to-peer systems makes them natural candidates to imple-
ment large-scale publish/subscribe systems. In this chapter, we pkHene-
sign and evaluation of @-2-SuB, a scalable, self-organizing peer-to-peer ap-
proach for content-based publish/subscribe in collaborative envinotsm&s-
2-SuB deploys an unstructured overlay where subscribers are clusterifidiens
dissemination structures, based on shared interests. To the best afiawir k
edge, ¥B-2-SuB is the first attempt to build publish/subscribe overlays using
epidemic-based algorithms, thus exploiting their ability to handle dynamic envi-
ronments.

Unlike SuB-2-SuB, previous peer-to-peer approaches for content-based pub-
lish/subscribe have mainly focused on structured overlays. Among thenh-Meg
doot [Gupta et al. 2004uses an extension of the CAN DHRatnasamy et al.
20014. It maps subscriptions to ax2k-Euclidean space, whekeis the number
of attributes. Each attribute is represented by two dimensions, corréagaadts
minimum and maximum allowed values respectively, allowing for range subscrip
tions. Unlike $48-2-SuB’s autonomous and self-contained operation, Meghdoot
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employs a separate set of dedicated nodes for storing subscriptionssaad
inating events. Meghdoot deals with sparse interest distribution with CAM zon
replication, which may be computationally expensive to maintain in highly popu-
lated parts of the space. Terpstra et &érpstra et al. 20Q3roposed to leverage
the properties of the Chord DHB{oica et al. 2000 implement an event filter-
ing system. Distributed nodes are dynamic brokers organized in a grapi Lise
subscription merging and covering to provide scalability, acting similarly to tradi-
tional content-based filtering systems based on a dedicated set ofdrblaw-
ever, such a set of brokers may be hard to maintain efficiently in highlyrdima
environments. Finally, Costa et al. proposed to use epidemic-based atgotih
enhance reliability of existing publish/subscribe syste@wsfa et al. 2003

We conclude that $8-2-SuB is an appealing alternative to existing solutions
for content-based publish/subscribe. It offers a scalable, autorsgraod self-
organizing system, combining the resilience of epidemic-based overlays with th
expressiveness of the content-based model.



CHAPTER9

Conclusions

In this dissertation we explored gossiping protocols for self-organizaaod

demonstrated their power in a number of different settings. This final ahaigte
sents our observations from the research conducted, grouped énctiieyories.
First, we discuss conclusions regarding randomized overlays, sesmmdusions
regarding structured overlays, and, third, conclusions from ouwsigdmsed ap-
plications. Finally, in Sectio®.4we discuss future directions for our research.

9.1. RANDOMIZED OVERLAYS

We present our high-level observations first, followed by detailedlosiuns
afterwards.

9.1.1. High-level Observations

In Chapters2 and 3 we explored a class of gossiping protocols in which peers
gossip membership information in a more or less random way. Our main conclu-
sion from these chapters is that such protocols constitute an excelléo¢ ¢bo
the decentralized construction of unstructured overlay networks thed shot of
properties with random graphs.

This class of gossiping protocols is particularly appealing to massive-scale
distributed applications. The reasons can be found in our high-levehaigons
from Chapter and3:

Decentralization Gossiping protocols are by nature fully decentralized. They
operate in a completely distributed way, by each node maintaining only a
very small, partial view of the network, and acting based on local decisions
exclusively.
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Self-organization and Adaptivity The gossiping protocols we explored in Chap-

ters2 and 3 are self-organizing. The behavior of nodes relies entirely on
local decisions, and the communication graph (i.e., the overlay) is defined
exclusively by local knowledge of the nodes, yet the system consexge

a whole towards certain global properties. In the case of network elsang
gossiping protocols have shown to be very adaptive. It is worth notirig tha
in our experiments, overlays converge to the same global properties irre-
spectively of the bootstrap method used. Self-organization renders thes
protocols attractive for internet-scale systems, for which explicit corgrol
either infeasible or, at least, very expensive.

No need for administration As a result of their self-organizing nature, these gos-

siping protocols are also administration-free. Global properties are not im-
posed through any central—and possibly expensive—administration and
control, but come “for free” as emergent properties of gossip-based

lays.

RobustnessWe observed that randomized overlays formed by our gossiping pro-

tocols demonstrate remarkable resilience to large-scale failures and high
node churn, even when each node maintains only a couple of dozen out-
going links. This property is particularly desirable for massive-scale dis-
tributed applications, as it keeps all nodes connected in a single cluster de-
spite failures and node churn, prohibiting (irrecoverable) partitionirtgef

set of nodes. Gossiping protocols are, therefore, valuable as arfigrdal
substrate taking care of membership management.

Self-healing behavior In addition to sustaining large-scale failures and high churn,

the gossiping protocols we explored also demonstrate strong self-healing
behavior. That is, after a—possibly severe—network change distiebs
overlay, nodes swiftly reorganize themselves and converge as of new to
global properties. In the case of continuous churn, the overlay esgag

a continuous self-healing process, maintaining its global properties close
(depending on the churn rate) to the ones in a stable network.

Scalability The gossiping protocols we explored in Chapt2iend3 are inher-

ently scalable. Irrespectively of the network size, each node maintalys on

a small, fixed sized, partial view of the network, and exchanges messages
with other nodes at a fixed rate. The size of the network does not hgve an
effect on the memory, processing, or network load of nodes. Essentially
gossiping protocols are infinitely scalable with respect to the load of nodes.

Local randomness We concluded that the protocols explored in Chafteon-

stitute a source of “random link generator”, providing each node with a
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stream of links to randomly chosen other nodes, in a way similar to a ran-
dom number generator providing a program with random numbers. This is
why we describe them collectively as the#R SAMPLING SERVICE. This
feature is important to a number of applications, some of which we explored
in Partll of this dissertation.

Simplicity Last but not least, gossiping protocols are very simple in nature. This
is particularly important for systems of so large scale, where things can
easily get out of hand.

9.1.2. Detailed Observations

Apart from these high-level observations, by conducting the resgaesented

in Chapter® and3 we came across a number of specific, fine-grained questions.
Delving deeper into the details, we pinpointed a number of design issueg#tat n
to be addressed, the most important of which are laid out here:

View length Our protocols define a very small view length, consisting of only a
couple of dozen links out of possibly hundreds of thousand. Definitady,
reason for imposing such a short view length is not to save memory, a very
cheap commodity nowadays. In fact, some applications, principally the
ones related to content searching, would benefit from a larger viewhleng
However, there is a tradeoff between the chosen view length and the validity
of links in dynamic environments. We observed that the larger the view
length, the higher the percentage of dead links in node views. Small views
allow nodes to cycle through their neighbors faster, removing dead links in
a more timely manner.

Peer selectionPeer selection addresses the following question: “Which of its
neighbors should a node select to initiate gossiping with?” Should it prefer a
new (head peer selectignan old ail peer selectioly or a randomrandom
peer selectioplink from its view? Head peer selection is a bad idea: a
new link points to a recently contacted neighbor, therefore it has little new
useful information to offer. Especially selectittge newest link is the worst
option, as it points to the last contacted neighbor, which means that a node
keeps gossiping with that same neighbor continuously. We have concluded
that peer selection should be set either to tail or random. In fact, these
two options have very comparable effects, with tail peer selection slightly
outperforming random in most cases.

Directionality of communication When nodeP initiates gossiping with nod@,
who should send links to the other one? It can be eithgyush-only, Q
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(pull-only), or bothP andQ (push-pul). Our experimental analysis showed
that the only policy that results in adaptive overlays is push-pull, that is,
communication should be bidirectional. Using the pull-only (push-only)
policy, a node having very low indegree (outdegree) has low chariees o
vertising itself to other nodes, and, therefore, higher chances to geindis
nected. Such scenarios are common. For instance, a node may find itself
having a low indegree because it just joined, or a low outdegree because
some of its neighbors died.

Garbage collection policy After exchanging views, a node typically finds itself
with more links than its view size, so it should discard some of them. Which
ones should it discard? The newest links, the oldest ones, or a resatom
ple? And how many? In our generic gossiping framework of Chapter
we are modeling this with thieealing parameter HWe conclude that dis-
carding theH oldest links after each gossip exchange helps the network get
rid of invalid links (links pointing at disconnected nodes) soon. The higher
the value ofH, the faster dead links are removed, therefore, the better the
self-healing behavior of the network. However, there is a tradeo.HEre
higher the value oH the more skewed the indegree distribution becomes,
which, in turn, is a disadvantage with respect to balanced load distribution.

Copy links or swap links? This question addresses the way nodes exchange views.
When gossiping, what should a node do with the links it sends to its gossip-
ing counterpart? Should it still keep thewopylinks), discard themswap
links), or something in-between? Swapping links results in lower cluster-
ing, resembling random graphs. This, in turn, has three advantagss.itFir
provides nodes with highly uncorrelated neighbors, leading to better local
and global randomness. Second, it increases the resilience of therkhetwo
to catastrophic failures. Third, it results in more concentrated indegree dis
tributions, having a positive effect on load distribution. On the other hand,
copying—as opposed to swapping—Ilinks results in higher clustering, form-
ing overlays that resemble small worlds. The load is less evenly distributed
across nodes. However, there is an abundance of links after essip ga-
change, which permits us to increase the healing parardeteraking the
network more resilient to high churn.

Apparently there is no single best solution for all design issues. Ouanese
depicts the tradeoffs imposed by different policies. Depending on that@soin
a particular network, the designer can handle the respective tradeotisdingly.
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9.2. STRUCTURED OVERLAYS

In Chapter4 we presented the framework consisting ofc\WWITY and the
PEER SAMPLING SERVICE, that allows networks to self-organize into a given
target topology. The target topology is expressed by means of a selkatiiiion
that determines which neighbors are optimal for every node.

The overall conclusion from this part of our research is that our tgyoton-
struction framework is flexible enough to build a wide variety of topologies. In
particular, the framework excels for topologies demonstrating high ctimelaf
nodes that share common neighbors, embodying the principle “the friemy of
friend is also my friend”. That is, topologies where two nodes sharingraxuan
neighbor have a high chance of being direct neighbors as well. Foorietwwith
lower correlation between nodes, our framework still manages to consieuar-
get topology, although not as efficiently, as the discovery of apprepmigighbors
relies on random encounters.

The major conclusion regarding topology construction is that it is crucial to
combine two layers. One layer, namely thec\WWITY protocol, strives at locating
neighbors of close proximity in the target topology. The importance of thig laye
straightforward: it establishes the target topology links. It continuouslyorgs
these links by probing neighbors for links to new, even “closer” neighldmetter
approximating the ideal neighbors in the target topology.

The other layer, in our case implemented by tlEER SAMPLING SERVICE,
keeps nodes connected in a randomized overlay. This is crucial fore@smns.
First, it prohibits partitioning of the set of nodes, which would occur in no time
if nodes concentrated only on their “close” neighbors. In a partitionediay;
nodes that happen to join in the “wrong” partition have no way to traverse the
network to discover their appropriate neighbors. Second, it providdsswith
random links all over the network. This is vital for newly joined nodes tahdast
their topological vicinity in an already converged overlay, rather tharetsang
the network in numerous small steps. Random links serve in a way similar to
long-range links in small-world networks.

Concluding, the principal advantage of our topology construction frasriew

is that it is simple and generic. Its simplicity stems from its self-organizing na-
ture. Each node autonomously carried out a sequence of simple stepsaaates
based on local decisions exclusively, eliminating the need of any depiofyad-
tructure. Its generic character is derived from its flexibility to form a widdety

of target topologies, given the appropriate selection function. It cotesitthere-
fore, a very convenient—yet efficient—way to form arbitrary topologééber for
prototyping or for the working version of massive-scale decentraligstémis. It

is particularly suitable for systems where the exact final topology is natke-
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fore deployment, as it permits fine tuning, or even radical changes ofgib&otyy
at run-time.

9.3. APPLICATIONS

The second part of this dissertation dealt with applications based on the pro
tocols presented in the first part. The applications included routing tableggana
ment (Chapteb), information dissemination (Chapté}, semantic overlay net-
work construction (Chaptef), and a publish/subscribe system (Cha@erAll
four applications employed gossiping protocols to organize the nodestaircer
topologies in a fully decentralized and autonomous manner. With the exception o
the first application, routing table management, which constitutes our fiegtseff
towards gossip-based structuring, all other applications are based oarttbina-
tion of VICINITY with the FEER SAMPLING SERVICE.

Chapter5 demonstrated the potential of the&eER SAMPLING SERVICE in
forming a structured overlay. As mentioned already, this was our firgrsys
derive structure from randomness. The main conclusion drawn fronchlaister
is that randomized gossiping protocols can be harnessed to createrstrincéLto-
tally decentralized, self-organizing fashion. We also observed thabthestness
and self-healing properties common in gossip protocols are retained in lgugdin
structure. Although the research presented in this chapter is now outnatee
VICINITY protocol, the conclusion it offered was valuable in continuing our work
towards that direction, that is, gossip-based topology construction.

Chapter6 employed MCINITY and the RER SAMPLING SERVICE for infor-
mation dissemination. Gossiping protocols have been applied previousisofor
abilistic information disseminationgirman et al. 1999Kermarrec et al. 2003
Our research extends previous work by complementing probabilisticdetitr-
ministic dissemination. The chief conclusion of this chapter is that the combi-
nation of probabilistic with deterministic—together callegbrid—dissemination
constitutes a very attractive framework for broadcasting messageasrfficand
inexpensively, in a completely decentralized way. Probabilistic dissemination
(i.e., forwarding a message at random) is achieved through random bidis-e
lished by the RER SAMPLING SERVICE, and results in fast diffusion of mes-
sages all over the network. Deterministic dissemination (i.e., forwarding a mes-
sage across well defined links) is carried out over a structured gverimed by
VICINITY, and ensures that every message reaches all nodes.

In Chapter7 we employ gossiping to enhance distributed content-based search-
ing. We employ the topology construction framework aEWiTy and the BRER
SAMPLING SERVICE to build a semantic overlay network linking nodes of related
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interests. When node issues a query, it first asks a few of its semantilcest
peers, and if the query is not satisfied it resorts to the underlying seach-
anism (such as flooding, random-walks, super-peer indexing, etar)si@ula-
tions, based on real-world traces, show that about 30% of the quegisatisfied
this way.

The idea of building a semantic overlay network to enhance content-based
gueries is not new. However, all previous systems depended ontit=uidsguess
which peers out of the ones that recently served a node might be usséilving
the same node again. As a consequence, such systems start beitigeefiely
after a node has issued a number of queries. Also, they (implicitly) assutiattica s
network, and no changes in user interests, otherwise links collected inetbenp
are likely to be useless in the near future.

Unlike these systems, our protocol is—to the best of our knowledge—#te fir
system that handles node churn and dynamic user interest. It is a higigtia
fast converging, yet lightweight epidemic-style solution, that builds and taiam
semantic overlay networkzoactively

Finally, Chapte introduces $B-2-SuB, a fully decentralized, autonomous
solution for attribute-based publish/subscribe supporting exact age Greries.
SuB-2-SuB is based on a self-organizing overlay, that groups nodes of overlap-
ping subscriptions together, so that all nodes interested in a given exerlis-
seminate it among themselves in a completely autonomous way.

Our major conclusion from this chapter is that building a collaborative pub-
lish/subscribe system can benefit from the scalability and adaptivity inhire
P2P systems. In additionu8-2-SuB demonstrates the power of gossiping proto-
cols in building intricate structures capturing relations between peers. Fiwally
conclude that unstructured overlays can be very promising for puhlisé¢sibe
systems, a research area currently dominated by work on centralizexdchieal,
and structured P2P systems.

9.4. FUTURE DIRECTIONS

This dissertation investigated gossiping protocols and showed their power in
a number of different applications. In effect, our work has openedesnew
tracks in the area of gossip-based self-organization for massive deedatral-
ized systems. Undoubtedly, this is a large area that cannot be fully coveee
single dissertation. There are a number of directions in which our réseanche
complemented and extended.

An important next step in our research is the replacement of periodic view
exchanges with a reactive exchange mechanism. With such a protocek nod
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would locally determine and dynamically adjust their gossiping frequenaydbas
on observed system dynamics, such as node churn, failure rateésfemdation
dissemination needs. We envisage that this replacement will lead to a better uti-
lization of network resources, and incur only minimal costs for detectingdfaile
nodes and keeping membership information up to date. A first step towads re
tive adaptation of the gossiping frequency can be found in our recerit @n a
gossip-based clock synchronization protodaignicki et al. 2006

Expanding on adaptation, it will be interesting to build an adaptive version of
the PFEER SAMPLING SERVICE, that dynamically adjusts trewapping parameter
(S and thehealing paramete(H), to optimize system behavior given the current
network conditions. Such a system would switch to a more fault tolerant nfode o
operation in the face of high churn, and would gradually shift to an oyevlth
more balanced degree distribution and lower clustering as the system sgabilize

To further limit overlay maintenance costs, network proximity should be taken
into account. Network proximity estimation can be provided through a decen-
tralized network coordination system such as Sk&8eymaniak et al. 20Q4or
Vivaldi [Dabek et al. 2004 In a proximity-aware gossiping protocol, view ex-
changes among nearby peers should be favored—that is, be marerftegthan
among distant ones. This, however, would have an impact on the corityecti
and robustness properties of the emerged overlays. Determining theaighte
between proximity-aware gossiping and desired overlay robustnesttates a
challenging research topic.

Overlay management is not the only service proximity-aware gossiping can
be useful to. Applications can benefit from proximity-aware overlaysltvoer-
ing communication costs and enhancing application efficiency. More spdigific
input from network coordination systems, such as Skole and Vivaldipean-
corporated in the WINITY selection function of an overlay-based application,
resulting in proximity-aware overlays. The implications of such overlayspas
posed to a proximity-unaware ones, in efficient broadcasting of informatie
clear.

Another research direction worth following is the class of gossiping potgéoc
featuring variable view lengths. Our gossiping protocols (with the excepfitire
top layer in $4B-2-SuB) impose a fixed length on node views. The underlying
motivation is to keep the number of neighbors per node low and controllable, s
that dead links are discarded promptly. An alternative is to impose a maximum
lifetime for each link and discard it after it expires. This alternative is employe
by the Kelips protocolGupta et al. 20083 It is not known, however, how overlay
properties, such as the degree distribution, the percentage of deadlirstsring,
etc., are affected by node churn and failures. This family of gossipiogp@ols
certainly deserves further research.
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All research presented in this dissertation is experimental. Gossiping pl®toc
exhibit particularly chaotic behavior that is hard to model analytically. Tétgzal
analysis has not been in the focus of this work. Nevertheless, it is ititeyee
mathematically analyze the behavior of gossiping protocols, and formally talida
their properties. Our recent work iBpnnet et al. 2006 analyzing a simplified
version of GrcLON without the age field, constitutes a first attempt in that direc-
tion.

With respect to information dissemination, this dissertation has focused on
push-based approaches. This is the case in both protocols dealing witimaaf
tion dissemination, namely theliRGCAST protocol (ChapteB) and the &B-
2-SuB publish/subscribe system (Chap8&r Combining push-based with pull-
based dissemination should yield a significant improvement in dissemination ef-
ficiency. However, the details of such an approach have been egferifuture
work.

Some applications may require higher reliability and performance guarantees.
Gossiping protocols, and P2P systems in general, offer best-effatioss. An
interesting direction of research would be in designing hybrid systemsdhaist
of a combination of centralized and P2P components. In such a setting|zutr
components will provide hard guarantees on reliability, while P2P components
will add scalability to the system. Napster was a very successful exampleloés
hybrid systemINapste}. Its eventual failure was due solely to copyright violation
issues.

Security has not been discussed in this dissertation. Neverthelesstysiscu
a crucial aspect for any communication framework today. In the casessfgjng
protocols, security comes in two different flavors. First, security at trezlay
maintenance level. Malicious peers may deliberately try to cause damage to the
overlay, e.g., by reporting fake neighbors, discarding legitimate neighaohiev-
ing a very high degree by gossiping at a very fast pace, etc. Mechsusisould
be in place to shield gossip-based overlays from such malicious peassndse
security at the application level. Malicious peers may refuse to forwardagess
respond to other peers, and generally contribute to a P2P applicatiamit$pat
this level is application specific, and should be dealt with by the respeqiive a
plications. We believe that security is the main factor still hindering the massive
deployment of peer-to-peer systems for critical applications nowadtayispor-
tance, therefore, is key to the commercial success of peer-to-paecalis

In a broader sense, our vision for the future is to exploit tBEFPSAMPLING
SERVICE, CYCLON, VICINITY, and possibly new gossiping protocols for a mul-
titude of diverse peer-to-peer applications. We envision the protocotslunted
in this dissertation as forming a basic background process, supportgenio-
ing, and managing overlay networks afiy scale across the Internet in a fully
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decentralized way.



SAMENVATTING

Epidemisch Gebaseerde
Zelforganisatie in Peer-to-Peer
Systemen

ACHTERGROND

Met rede kan gesteld worden dat we in het tijdperk van de communicatie rev-
olutie leven. Communicatie is nog nooit zo aanwezig, massaal, snel en gpedko
geweest. Computernetwerken in het algemeen en het Internet in hetaijzpe-
len een katalyserende rol in moderne samenlevingen. De dagen datdreet
slechts een onderzoeksgereedschap was, of een communicatiemiidgbehts
academische en militaire instellingen, liggen ver achter ons. Toegang totéet |
net heeft zich verbazingwekkend snel ontwikkeld voor een steedebwordend
publiek.

Vroege Internet diensten werden ontwikkeld rondom twee principaszdie
geheterclient/server modegn centralisatie. Het client/server model maakt een
expliciet onderscheid tussen computers (“knopen”) die een dienseleyde zo-
geheterserver3 en computers die diensten afnemenclients. Centralisatie be-
helst dat een dienst op sleclé&n centraal punt aangeboden wordt, veelal boven-
dien door slechtéén computer.

De groei van het Internet heeft laten zien dat een gecentraliseetdeeatuur
niet langer houdbaar is voor een groot aantal diensten zodra hat amemers
(met andere woorden, clients) dramatisch toeneemt. Ten gevolge hieneel is
onderzoek ontstaan naar gedistribueerde systemen, waarbij de&achde is om
het aanbod van een dienst te verspreiden over meerdere, samenaedomput-
ers. Een dergelijke verspreiding heeft potentieel veel voordelearomder een
grotere tolerantie tegen falende computers, verhoogde geaggregegaciteit,
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geografische verspreiding (met als gevolg dat een dienst dichterlnijsckemt),
enz. Clients blijven echter ook bij verspreiding van de servers relatssigia het
blijven slechts afnemers.

In de afgelopen jaren is de toegang tot het Internet sterk verbetenck! z
in quantitatieve als qualitatieve zin, en is ook de reken- en opslagkraci@an
indrukwekkend toegenomen. Het effect is dat de traditioneel relatefkevclient
computers nu zeer krachtige en goed verbonden apparaten zijn gewdeegn
gevolg daarvan is dat in veel gevallen hun relatief passieve rol lanyna@ar
zeker veranderde naar die van actieve entititeiten in een massal gedestiibue
systeem. In dit nieuwe paradigma, ook vpeler-to-peer computingenoemd is
het verschil tussen aanbieders en afnemers van diensten verdwenelaats
daarvan zijn knopen gelijkwaardig en werken samen om een specifigis die
te voeren.

Hetpeer-to-peefP2P) model brengt een aantal uitdagingen met zich mee. De
belangrijkste daarvan is de potentiele schaal waarin P2P systemen dienen te
ereren. De schaal van deze systemen is gegroeid van groot naaameasarbij
in sommige gevallen miljoenen computers verspreid over het hele Internetsame
werken, zonder dat er sprake is van enige centralisatie. Echter, myetifke
groottes hebben we ook te maken met een hoge mate van instabiliteit doordat
dergelijke systemen continu aan verandering onderhevig zijn. Knopeann e
P2P systeem laten geen gegarandeerd patroon van samenwerkin pkxats
daarvan zien we een komen en gaan van knopen en vallen er consbaeinkn
en verbindingen uit. Daarbij komt dat de knopen in een groot P2P systegm
kunnen verschillen met betrekking tot hun hardware architectuur, sgatide
software, en feitelijke kracht zoals uitgedrukt in 0.a. de capaciteit vacegsor,
werkgeheugen, permanente opslag en netwerkverbinding.

Dit geheel maakt de administratie en het beheer van P2P systemen extra kri-
tish. De massale omvang in combinatie met de hoge mate van dynamiek in de
samenstelling van een P2P systeem maken expliciete en centrale besturieg vrijw
onmogelijk, of op z’'n minst zeer lastig te realiseren. Gecentraliseerdesapios
gen zijn zeer gelimiteerd als het aankomt om snel en effectief bij te houele w
computers deel uitmaken van een systeem. Deze schaalbaarheidsprdhlemen
nen enisgzins verminderd worden door bijvoorbeetddnichische oplossingen toe
te passen. Echter, dergelijke oplossingen zijn dikwijls complex, introdncae
forse administratieve last en zijn afhankelijk van de beschikbaarheiderakiein
groepje cruciale computers. Deze laatste afhankelijkheid kan aangepaddn
door het toepassen van replicatie, maar dergelijke oplossingen verboggplex-
iteit en feitelijke beheersbaarheid van de besturing op zich. Daarbij kahded
omvang van de benodigde besturing sterk afhankelijk is van de omvanigetan
systeem dat bestuurd dient te worden. Een schatting geven van die gpisvan
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moeilijk, zoniet dikwijls onmogelijk.

De toename van het aantal apparaten dat verbonden is met het |etemntet
verdere verspreiding van netwerktechnologie laat zien dat de tremdjrate sys-
temen van samewerkende computers alleen maar zal toenemen. Ook in@ns ond
zoek anticiperen we een sterke toename van zeer omvangrijke en gedistribu
toepassingen. Derhalve zijn we afgestapt van deterministische en exigsete
teembesturing en zijn methoden gaan exploreren voor autonoom management
de vorm van zelfbestuur en -organisatie.

EPIDEMISCHE PROTOCOLLEN

Het doel van dit proefschrift is het verkennen van de uitdagingeatibésturen
van zeer grote gedistribueerde systemen, het introduceren van rpeatweollen
en het onderzoeken van hun effectiviteit in huidige en toekomstige tsiagas.
Het was hierbij niet de bedoeling om de communicatiemodellen die ten grond-
slag liggen aan het Internet te veranderen daar vele toepassingsrurtséekend
werken. In plaats daarvan hebben we gezocht naar alternatieveioglas waar
huidige benaderingen te duur zijn, niet schaalbaar zijn, teveel adminisér s
vergen, of gewoon niet toepasbaar zijn.

In het bijzonder heeft het onderzoek zich gericht op het toepasserzo-
gehetenepidemische protocollemoor de ontwikkeling en onderhoud van P2P
systemen. Het basisprincipe van dergelijke protocollen is dat elke krengh-r
matig een willekeurig andere knoop selecteert om gegevens mee uit te wisse-
len. Op deze wijze zal data zich geleidelijk over alle knopen verspreideattotd
elke knoop dezelfde informatie heeft. Een probleem dat hierbij optisedht
er een willekeurige selectie uit alle andere knopen moet plaatsvinden. Fadtier
dergelijke selectie is ronduit onmogelijk indien we te maken hebben met ze¢er gro
systemen, waar globaal bekeratzurateinformatie over de huidige verzameling
van knopen schier onmogelijk is.

In ons onderzoek hebben we gekeken naar epidemische protocollep die
twee manieren afweken van het oorspronkelijke basisprincipe. Teted@bben
we de aanname van globale kennis omtrent de verzameling van knopen laten
vallen. In onze benadering hanteert elke knoop een kleine, maadeseande |i-
jst van andere knopen, ook wel zijn buren geheten. Deze lijsten brengezich
mee dat een P2P systeem georganiseerd is alaetamrerk Ten tweede behelst
de data die tussen twee knopen uitgewisseld wordt in elk geval refereaties
de respectievelijke buren. Met andere woorden, knopen informékeareover
hun buren. Na een uitwisseling worden de respectievelijke lijsten (gedegltelijk
ververst met referenties naar nieuwe buren. Door exact vast terlegelke refer-
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enties uitgewisseld worden, en welke referenties in de lijst van buremopgn
worden, blijkt het mogelijk om op volledige gedecentraliseerde wijz@gdelogie
van het P2P netwerk vast te kunnen leggen.

ONZE PROTOCOLLEN

Een aantal ontwerpkriteria bepalen de eigenschappen van de resildit&2P
netwerken. Wordt de lijst van buren min of meer willekeurig samengesteid, da
blijkt een zogeheterandom netwerlet resultaat te zijn. Wordt een ordening op
de selectie van referenties gehanteerd, dan kunnen specifieke topalggieon-
strueerd worden. Deze keuzemogelijkheid heeft tot de volgende twese@o-
tocollen geleid.

Cyclon In het Cyclon protocotuilen twee knopen referenties met buren. Dit
betekent dat de topologie van het P2P netwerk continu verandert. rEchte
het blijkt dat macroscopische eigenschappen convergeren. Ze@melx
experimenteel aangetoond dat de gemiddelde afstand tussen twee,knopen
alsook de gemiddelde clusteringsafficient convergeren naar de waarden
die men ziet bij random netwerken. Dat betekent dat op elk moment de lijst
van buren feitelijk overeenkomt met ewillekeurigeselectie van knopen
uit het P2P netwerk.

In het bijzonder blijkt dat Cyclon niet alleen overeenkomsten heeft met ra
dom netwerken, maar dat het bovendien uitstekend bestand is tegen snelle
veranderingen in de samenstelling van P2P systeem, of deze nou opzettelijk
tot stand zijn gekomen, of omdat er fouten zijn opgetreden. Forse veran-
deringen tasten doorgaans de toplogie van het netwerk aan, maar Cyclon
blijkt hierbij altijd zeer snel te convergeren naar een stabiele situatie- Daar
bij komt dat elke knoop doorgaans bij evenveel andere knopembeke

wat vervolgens weer leidt tot een evenwichtige balancering van het uit te
voeren werk.

Cyclon maakte onderdeel uit van een uitgebreide studie naar de effacten
ontwerpbeslissingen voor epidemische protocollen die uitgaan van alleen
lokale informatie. Hoewel de functionele gedragingen van de protocollen
grote overeenkomsten laten zien, blijkt dat extra-funtionele eigensehapp
zoals balancering van werk, robuustheid, fouttolerantie en zelforg#is
gevoelig te zijn voor de wijze waarop lijsten van buren uiteindelijk samengesteld
worden na een epidemische uitwisseling.

Vicinity In het Vicinity protocol besluit een knoop alleen die verkregen refer-
enties te behouden die aan een bepaald voorkeurskriterium voldoen. Ee
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knoop zal op deze wijze geleidelijk buren vervangen door buren didstee
meer zijn voorkeur hebben, om uiteindelijk met de optimale buren te eindi-
gen. Op deze wijze zal het P2P systeem zichzelf organiseren nagpessn
fieke topologie die volledig bepaald wordt door de selectiefunctie voér pre
erente buren. Het grootste voordeel van Vicinity is haar generieledkicar

door slechts de selectiefunctie te veranderen kan op eenvoudige wijze ee
andere topologie ontstaan. Ook blijkt daranderingvan de selectiefunctie

al snel tot convergente leidt naar de nieuw beoogde organisatie.

Vicinity kan echter niet garanderen dat het P2P netwerk samenhahlijend
jft. Derhalve wordt het altijd in combinatie met Cyclon gebruikt. Deze
combinatie heeft tevens het voordeel dat vergelegen buren uiteindelijk to
ontdekt worden en derhalve geselecteerd kunnen worden.

Deze twee protocollen zijn gebruikt voor ontwerp en evaluatie van vier ver
schillende applicaties: een systeem voor het onderhouden van rgstabellen
in zogeheten DHT netwerken; een raamwerk voor éffite informatieverspreid-
ing; de constructie van semantische netwerken voor gedecentralisedehz en
tenslotte een collaboratigiublish-subscribesysteem. De toepassing van Cyclon
en Vicinity voor deze vier applicaties is telkens zeer verschillend en illustiaar
versatiliteit.

GEVOLGTREKKINGEN

Het toepassen van Cyclon en Vicinity leverde een aantal inzichten op. Ten
eerste bleek uit onze experimenten dat de protocollen inherent schiaataen.
Schaalbaarheid is het gevolg van het feit dat elke knoop een vdsal aperaties
uitvoert, op een tevoren bepaalde frequentie, en onafhankelijk varodéeyvan
het P2P systeem. Ten tweede bleek dat onze protocollen zich zeer guaehk
aanpassen aan gewijzigde situaties in de samenstelling van het P2P systeem. De
combinatie van schaalbaarheid met deze flexibiliteit maakt onze epidemisehe pr
tocollen uitermate geschikt voor zeer grote zelforganiserende systéteek op
dat in geen geval er sprake is van welke vorm van centraal behe@otfta Glob-
ale eigenschappen worden dus niet centraal opgelegd, maar komeanaédfv
tevoorschijn bij de uitvoering van een protocol.

Uit onze experimenten bleek verder dat de epidemische protocollen bgzond
goed bestand waren tegen falende knopen en verbindingen tusgenkrigeze
eigenschappen komen voort uit het feit dat alle knopen een gelijkvgeard|
spelen, met als gevolg dat het effect van een falende knoop zichf matiovelijks
verspreidt.
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Bij massaal optreden van fouten zien we wel degelijk een effect oddizdle
gedrag van de rest van het P2P systeem. Het bleek echter dat teigsefunc-
tionaliteit en betrouwbaarheid op voorspelbare wijze afnamen bij het iioeme
van het aantal falende knopen. Bovendien bleek dat bij een plotsediredende
gelijktijdige uitval van een groot aantal knopen, het overgebleven eystach
snel herstelde door naar een nieuwe topologie te convergeren mewdasge
globale eigenschappen. Tot slot bleek dat snelle wisseling in de samengstatin
participerende knopen continu gecompenseerd werd door gewenptesamgen
in de toplogie.

Al deze goede eigenschappen gaan gepaard met een soms velgassen
voud: zowel Vicinity als Cyclon zijn protocollen waarvan de details zich dip fe
elijke en op uitermate simpele wijze laten beschrijven. Eenvoud is essentieel voo
grootschalige systemen die vanuit zichzelf de natuurlijke neiging heblmepler
te zijn. De combinatie van eenvoudige principes en de opmerkelijke inherente
eigenschappen van epidemische protocollen ligt ten grondslag aan otizati®o
voor het exploreren van hun toepassingen in grootschalige zelisegande sys-
temen.
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